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Abstract

Successful adaptive behavior requires the learning of associations between stimulus-specific choices and rewarding
outcomes. Most research on the mechanisms underlying such processes has focused on subcortical reward-processing
regions, in conjunction with frontal circuits. Given the extensive stimulus-specific coding in the sensory cortices, we
hypothesized they would play a key role in the learning of stimulus-specific reward associations. We recorded electrical
brain activity (using electroencephalogram) during a learning-based decision-making gambling task where, on each trial,
participants chose between a face and a house and then received feedback (gain or loss). Within each 20-trial set, either
faces or houses were more likely to predict a gain. Results showed that early feedback processing (∼200–1200 ms) was
independent of the choice made. In contrast, later feedback processing (∼1400–1800 ms) was stimulus-specific, reflected by
decreased alpha power (reflecting increased cortical activity) over face-selective regions, for winning-vs-losing after a face
choice but not after a house choice. Finally, as the reward association was learned in a set, there was an increasingly
stronger attentional bias towards the more likely winning stimulus, reflected by increasing attentional orienting–related
brain activity and increasing likelihood of choosing that stimulus. These results delineate the processes underlying the
updating of stimulus–reward associations during feedback-guided learning, which then guide future attentional allocation
and decision-making.
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Introduction
To achieve successful adaptive behavior, humans and other
animals need to learn to associate specific stimuli and choices

with potential rewards, a process that requires the continuous
monitoring and incorporation of feedback information. Learning
such associations could facilitate predicting whether one will
like a new food product based on previous experience with
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similar foods or whether walking or taking public transportation
is a quicker option to get home from work at certain times of
the day. Choosing adaptively in probabilistic settings requires
an organism to learn, store and continuously update stimulus–
reward associations to be available to guide future behavior (e.g.
Anderson, 2017).

Previous research investigating the neural processes under-
lying probabilistic learning has shown an important role for
subcortical reward regions, such as the ventral tegmental
area (VTA)/substantia nigra (Schultz et al., 1997; Schultz, 2016)
and nucleus accumbens (NAcc; Alexander and Crutcher, 1990;
Floresco, 2015), in conjunction with frontal regions, such as the
anterior cingulate cortex (ACC; Bush et al., 2002; Botvinick, 2007;
Klein-Flugge et al., 2016) and orbital frontal cortex (FitzGerald
et al., 2009; Sul et al., 2010; Wallis, 2011; Leong et al., 2017),
in the processing of value and feedback-related information.
Activation in these brain regions has been found to vary
according to the difference in value between the actual and
the expected outcome (i.e. reward-prediction error), as shown
both in humans with functional magnetic resonance imaging
(fMRI) and in non-human primates with single-unit recording
(Schultz et al., 1997; Niv, 2009).

In addition, in humans, brain activity reflecting the evalua-
tion of feedback information has been tracked non-invasively
at the scalp with high temporal resolution by using electroen-
cephalogram (EEG) recordings and analyzing the associated
event-related potentials (ERPs). This research has consistently
found elicitation of the feedback-related negativity (FRN)
response, a fronto-central negative-polarity deflection that
peaks in the scalp-recorded ERP around 250 ms following
feedback and is larger for negative compared to positive
outcomes (Miltner et al., 1997; Gehring and Willoughby, 2002).
Following the FRN, outcome feedback also elicits a positive-
polarity P3 deflection (starting at ∼300 ms) that tends to be larger
in response to suboptimal outcomes and has been postulated
to reflect the general enhancement of cognitive resources in
response to a relative loss (Nieuwenhuis et al., 2005; Polich, 2007;
O’Connell et al., 2012; San Martín, 2012; San Martín et al., 2013).
In addition, the P3 has been reported to be larger when stimulus
values have to be updated, and its amplitude has been found to
predict future choice adjustments (Fischer and Ullsperger, 2013;
San Martín et al., 2013).

The subcortical and frontal regions mentioned above,
however, seem to typically respond to loss-vs-gain feedback
mostly independently of the specific stimulus with which the
feedback was associated. Accordingly, our understanding of
the neural mechanisms through which feedback information
guides the establishment and updating of stimulus–reward
associations remains incomplete, particularly with regard to
the possible role of the sensory cortices during the learning and
updating of stimulus–choice contingencies. More specifically, we
hypothesized that feedback-guided stimulus-specific updating
processes would modulate the activity in areas in the sensory
cortices specifically involved in the processing of the stimuli
whose reward associations are currently being learned.

Relatedly, recent studies have reported that attention can
be influenced by specific stimuli that have been previously
associated with reward. Specifically, stimulus–reward asso-
ciations have been shown to bias attention to be rapidly
oriented towards those stimuli when they appear in a visual
scene (Hickey et al., 2010; Krebs et al., 2011b; San Martín et al.,
2016). The general idea is that by biasing attention, stimulus–
reward associations can potentially improve environmental
responsivity, decision-making and other behavior (San Martín

et al., 2016); on the other hand, such associations can also
misguide attention when they are associated with a task-
irrelevant distractor stimulus or feature (Hickey et al., 2010;
Krebs et al., 2010; Krebs et al., 2011a; Krebs et al., 2013). In
the spatial attention domain, such biases in attentional
orienting can be measured by examining the hallmark ERP
component known as the N2pc, a lateralized negative-polarity
deflection peaking at ∼250 ms over posterior cortex contralateral
to the direction of an attentional shift (Hickey et al., 2010;
Kappenman and Luck, 2012). However, the stimulus-specific
neural updating processes involved in feedback-guided learning
that create these attentional biases remain poorly understood.

One possibility for such feedback-based updating would be
that neurons in sensory cortices that are involved in stimulus-
specific processing would be involved in such learning (Folstein
et al., 2013). A classic example of stimulus-specific coding is the
set of cortical regions that respond selectively to images of faces,
which have been delineated by fMRI and electrophysiological
measures (Perrett et al., 1992; McCarthy et al., 1997; Puca et al.,
1999; Kanwisher and Yovel, 2006). These face-specific regions
include the occipital face area (OFA), the fusiform face area (FFA)
and the superior temporal sulcus (STS; Gobbini and Haxby, 2007;
Pitcher et al., 2011). In addition, in humans, the processing of
faces elicits selective scalp-recorded ERPs, with the largest being
the N170 (latency 170 ms), a lateral-inferior occipital negative-
polarity deflection that is greater for faces compared to other
objects, generally thought to reflect increased activation from
the lateral face-selective cortical processing regions (Bentin
et al., 1996; Rossion and Jacques, 2012). Face-selective activity
is typically extracted by comparing responses to face images
to responses to images of other objects, most commonly
images of houses and other buildings. fMRI studies have shown
that house and building images elicit selective activity in the
parahippocampal place area (Epstein and Kanwisher, 1998), a
medial-inferior temporal brain region, but such stimuli do not
seem to produce a very distinctive marker in the ERPs.

Accordingly, here we focused on stimulus-specific cortical
activity for faces (extracted by face-image vs building-image
response contrasts) and its distinctive scalp ERP/EEG markers.
The stimulus and cortical specificity of scalp-recorded electro-
physiological measures, such as described above for the face-
selective N170, was for the ERPs that are extracted by time-
locked averaging the EEG. Also extractable from the EEG, how-
ever, are the time-locked power changes in oscillatory EEG activ-
ity, which can provide an additional useful window into corti-
cal brain processing. In particular, changes in oscillatory EEG
activity in the alpha band (8–14 Hz) have been found to index
the directionality of cortical activation, in that decreased alpha
power arising from a cortical brain region is typically associated
with increased cortical activation, and vice versa (van Dijk et al.,
2008; Jensen and Mazaheri, 2010; Scheeringa et al., 2012; van den
Berg et al., 2014; van den Berg et al., 2016). A classic example of
this effect in spatial attention is the relative decrease in occipital
alpha contralateral vs ipsilateral to a cued direction of attention
(Worden et al., 2000; Foxe and Snyder, 2011; Grent-‘t-Jong et al.,
2011), inversely paralleling relative lateralized increase in fMRI
activity observed under a similar contrast (Kastner et al., 1999;
Hopfinger et al., 2000; Grent-‘t-Jong and Woldorff, 2007; Green
et al., 2017).

Here, to investigate the feedback-guided stimulus-specific
updating processes, we leveraged the high temporal resolution
of EEG, using both ERPs and oscillatory EEG power changes,
to track the spatiotemporal cascade of activity over face-
processing–selective cortex, while participants performed a
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Fig. 1. Probabilistic gambling task: each trial started with a dual-object cue

stimulus, with a face on one side and a house on the other. Following the cue,

participants made a choice of one of these images by selecting the appropriate

arrow. Feedback with respect to loss vs gain for that choice was then presented.

probabilistic decision-making gambling task. On each trial
(Figure 1), participants were asked to choose between a face
and a house, after which they were given feedback indicating
that they would receive either a monetary gain or loss on
that trial. Within each 20-trial set, either faces or houses
were more likely to lead to a gain (probability bias in each
set was randomly chosen between 0.50 and 0.75), with the
participants instructed to try to learn the likelihood in that
set and thereby improve their reward-gaining performance. To
identify spatially discernable signals related to face processing,
we used a separate localizer task from which we delineated scalp
regions that reflect differential processing for faces vs houses.
Additionally, we analyzed the power changes in oscillatory
EEG activity in the alpha band as an inverse index of cortical
activations. In particular, modulation in alpha activity was used
as a marker for face-selective cortical activation to index the
trial-to-trial updating of stimulus-specific reward associations
during learning.

Methods
Participants

Thirty healthy volunteers [mean age (s.d.): 23.5 (2.9), 18 female,
29 right-handed] participated in the study. All had normal or
correct-to-normal vision, and all gave written informed consent.
The study was conducted in accordance with protocols approved
by the Duke Institutional Review Board. Participants were paid
15 dollars/hour, plus an additional reward-related bonus [mean
(sd): 9.6 USD (7.8)]. One participant was excluded due to poor EEG
data quality (>40% of the trials rejected due to artifacts), leaving
29 subjects in the final analysis.

Tasks and stimuli

Participants were asked to do a learning-based decision-making
gambling task built upon one we had employed previously
(San Martín et al., 2013; San Martín et al., 2016). Stimuli were
presented on a 24 inch LCD monitor using the Presentation
software package (Neurobehavioral Systems, Inc., Albany, CA).
Participants were seated in a comfortable chair with eyes about
∼60 cm from the screen.

Learning-based gambling task

The probability-learning (Plearn) gambling task (Figure 1) con-
sisted of 24 sets of 20 trials each. Within each set, either the faces
or houses were more likely to win, with an average probability
bias of 0.625 (ranging randomly from 0.50–0.75). As a result, the

final probability bias distribution across all sets was roughly
Gaussian [mean (sd): 0.625 (0.075)]. Each trial started with the
presentation of an image-pair cue (duration 1200 ms), consisting
of the image of a face (randomly selected from 20 male faces) and
the image of a house (randomly selected from 20 houses), both
with a resolution of 72 by 96 pixels. On each trial, the house and
face were randomly assigned to appear on either the left or right
side of a central fixation. After some delay (1200 ms), a screen
for choosing between the two cue stimuli (the choice screen)
was then presented, which consisted of two arrows randomly
pointing to the left and right, just above and below the fixation,
remaining on the screen until a behavioral response was given
(up to a maximum of 1200 ms). Participants were instructed
to choose the stimulus that they judged would be more likely
to lead to a gain by selecting the arrow that pointed in that
direction. Participants pressed the top or bottom bumper of
a gamepad (Logitech Rumblepad) corresponding to the top or
bottom arrow. If no response was given, participants received
feedback displaying ‘no response’ on the screen, followed by a
loss in points. If a response was made, the chosen arrow was
highlighted. Then, following a jittered interval sampled from a
uniform distribution between 700 and 900 ms, the gain/loss feed-
back appeared onscreen (duration 500 ms), which was either a
‘+8’ or a ‘−8’ printed in a blue or orange square (counterbalanced
across participants), indicating the valence of the feedback. After
the feedback, there was another jittered interval between 1500
and 2000 ms (i.e. 2000–2500 ms following the onset of the feed-
back stimulus). We intentionally chose a long interval after the
feedback to be able to track the stimulus–reward updating neural
signals following the processing of the feedback stimulus.

Participants were instructed to try to learn on each set of 20
trials whether faces or houses were more likely to result in a
reward in that set and were informed that they could win points,
which would translate to real money after the task, by choosing
the stimulus (i.e. face or house) that was most likely to win on
each set. Each set was followed by feedback as to how many
points they had accrued thus far. After a practice period in which
the subject demonstrated understanding of how to do the task,
the session started with the learning-based decision-making
task runs. After completing these, the participants performed
the face-vs-house localizer task (see below).

Localizer task

To extract potential regions of interest (ROIs) for assessing the
updating in the Plearn paradigm of the face-responsive sensory
cortices, we used a face/house localizer task. This task consisted
of presenting 480 faces and houses to the participants, which
were sampled randomly from the same set of 20 faces and 20
houses that were used in the learning-based decision-making
task. Twenty percent of these stimuli were presented as a blurred
version, which served as infrequent targets, while the rest were
clear. Blurry faces and houses were created by means of con-
volving a symmetric two-dimensional Gaussian kernel (with a
10-pixel width and height) with the face and house images. The
participants’ task was to detect the blurry images and indicate
whether they were a face or a house by pressing a button on the
response pad (left button for a blurry face and right button for
a blurry house). Only the 80% of trials in which a clear face or
house was presented (i.e. the non-targets) were used for the EEG
analysis. Each face or house was presented for 300 ms, and the
next trial started after a jittered interval of 600–800 ms. Twenty-
eight participants of the original 30 completed the localizer task.
The data from three participants in the localizer task (out of
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28) were discarded due to excessive noise (>40% of the trials
rejected), leaving 25 participants whose data in this task were
used to delineate the face-selective ROIs.

EEG recording and pre-processing

EEG was DC-recorded [500 Hz sampling rate, with a three-stage
cascaded integrator comb low-pass filter (CIC-filter) with a
corner frequency of 130 Hz] using a 64-channel, custom-layout,
equidistant, extended-coverage electrode cap (Woldorff et al.,
2002) and a Brainproducts Actichamp amplifier with active elec-
trodes (Acticap). The data were recorded referenced to the aver-
age of all the electrodes. Data were filtered offline using a 0.05
highpass causal finite impulse response (FIR) filter. Independent
component (IC) analysis was used to correct for eyeblinks, which
were extracted using the extended infomax algorithm as imple-
mented in the EEGlab software package [using EEGlab13.4.4b
(Delorme and Makeig, 2004)]. ICs that reflected eyeblinks (one or
two ICs per participant) were removed from the data.

For the Plearn task, epochs were extracted from −1000 ms
before until 2000 ms after the cue-pair onset and from
−1000 ms before until 3500 ms after the onset of the feedback
stimulus. For the localizer task, epochs were extracted from
−500 ms before until 1000 ms after the onset of the face
or house image. All epochs were baseline corrected from
−200 ms to the onset of the stimulus (either the cue-pair,
feedback or face/house image). Epochs containing any remaining
artifacts (e.g. horizontal eye movements, muscle noise) were
detected using a threshold (±110 μV from −500 to 1000 ms
or to 2500 ms, respectively, for the localizer and Plearn task)
and a 30 μV step function (from −200 to 500 ms or to
1000 ms, respectively, for the localizer and Plearn task). Such
epochs were then excluded from further analysis. For the ERP
analysis, but not the time-frequency analysis, an additional
low-pass filter (20 Hz, butterworth fourth order filter) was
applied to the epoched and averaged ERP Plearn and localizer
data.

Time-frequency analysis

Frequency decomposition was performed on the epoched EEG
average-referenced data using multitaper methods as imple-
mented in the analysis software package Fieldtrip (Oostenveld
et al., 2011), in which discrete prolate slepian sequences were
used to estimate the power in logarithmically spaced frequen-
cies from 3 to 80 Hz. The window widths for the tapers were
3 cycles for 3 Hz, 4 cycles for 4–7 Hz, 5 cycles for 8–14 Hz,
7 cycles for 15–20 Hz, 10 cycles for 21–50 Hz and 15 cycles for
51–80 Hz. Smoothing by means of multitapers was specified as
5 × log10 of each frequency. Log10-transformed power spectra for
each subject were subsequently binned and averaged according
to the various conditions (see below). No baseline correction in
the frequency domain was performed for the oscillatory power
analyses.

Data binning and averaging

The epoched EEG data and time-frequency power spectra were
binned according to feedback (gains and losses) and choice (face
and house), which resulted in an average number of trials for
each subject [mean (sd)] for face gain [111 (22)], face loss [96 (20)],
house gain [108 (23)] and house loss [92 (19)], after rejection of
noisy epochs. As expected, due to learning, there were signifi-

cantly more gain trials than loss trials [F(1,28) = 51.1, P = 0.0001],
especially towards the latter part of each set. On the other hand,
there were no significant differences in the number of gain or
loss trials for choosing a face vs a house [F(1,28) = 0.39, P = n.s.].

Analysis of cue-evoked ERP data

In order to calculate the cue-evoked N2pc response for indexing
the attentional bias as it was modulated by reward learning
across a set, the following procedure was implemented. To cal-
culate the attentional bias as a function of trial number, we
extracted cue-pair-evoked activity averaged in bins of two con-
secutive trials (i.e. trials 1 and 2 were binned together, trials 3
and 4 were binned together, etc.), separately for each side (left,
right) and for each experimentally fixed set-winner (e.g. if a face
would have a 0.60 probability of winning in a 20-trial set, that
would be a face-winner set). The cue-related attentional bias was
assayed by standard N2pc contralateral-vs-ipsilateral analysis
(Luck and Kappenman, 2012), that is, by subtracting the activity
in the contralateral channels (relative to the set-winner) minus
the ipsilateral channels and then collapsing over the left and
right sides.

Statistical analysis

For statistical analysis, we first calculated the time-locked ERPs
and time-frequency responses as a function of the various event
types and conditions. Next, the mean ERP component or Alpha-
power (8–14 Hz) amplitudes were extracted from specific scalp
ROIs and time-windows of interest (TOIs) based on the literature
and the localizer task.

The electrodes that were used for each ROI are reported
with respect to the extended 10–10 system naming convention.
Because the 10–10 montage and our 64-channel equidistant
montage do not overlap perfectly, we report here the 10–10
electrode sites that are closest to our electrodes. Most of our
sites were within 0.5 cm of a 10–10 site, and for these we have
listed that 10–10 site. Several of our sites were within 0.5 to
1 cm of a standard 10–10 site and these we have listed with a
prime (e.g. FC1′). Several of our sites were between 1 and 1.5 cm
of the closest 10–10 site, and for these, we have added a letter
specifying the relative direction to the standard site. Specifically,
we added ‘a’ when more anterior, ‘p’ when more posterior, ‘�’ for
more lateral and ‘m’ for more medial than the listed 10–10 site.
None of our electrode locations was further than 1.5 cm from a
standard 10–10 site.

The FRN and P3 were measured from 200 to 300 ms in a
fronto-central ROI (Cz, FCz, Fz, FC1′, FC2′, C1a, C2a) and from 400
to 600 ms in a parietal ROI (channels POz, Pz, CPz, P1a, P2a, P1p,
P2p; San Martín, 2012; Fischer and Ullsperger, 2013; San Martín
et al., 2013). Subsequently, the extracted values were analyzed
with a repeated-measures analysis of variance to test for statisti-
cal significance (P < 0.05) using the R statistical software package
(R Core Team, 2015).

For potential alpha effects following feedback, reflecting a
possible stimulus–reward cortical-updating process, we chose a
period after the feedback-evoked P3 and before the start of the
next trial (600–2000 ms following feedback; recall that the next
trial started 2000–2500 ms following the onset of the feedback).
The specific scalp ROIs for the potential alpha cortical-updating
effect were based on the data extracted from the separate local-
izer task (averaged across participants).
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The EEG data collected during the independent localizer task
were used to confirm that the stimuli that we used in this study
elicited face-vs-house activity differences as found in the exist-
ing literature and to delineate the specific locations for these
effects using the specific stimuli we employed here. To arrive
at our localizer-based ROIs, we first visually inspected all pos-
terior electrodes (i.e. over visual cortex) for the ERP differences
between the neural responses to face and house images to make
sure these effects were representative of previously reported
findings, including the hallmark, face-selective, lateral inferior
occipital N170 response. Next we used the set of electrodes that
were around the temporal and topographical peaks of these
distinctive face–house activity differences in the localizer task
to use as the scalp ROIs we would analyze in the Plearn learn-
ing task to examine the hypothesized occurrence of cortically
specific modulations related to learning, as would be reflected
by the post-feedback changes in alpha-band oscillatory power
in the Plearn task.

Statistical testing of alpha power was performed using
a cluster-based permutation testing approach (Maris and
Oostenveld, 2007). T-tests were performed on the average power
in the alpha band (8–14 Hz) and on each time point within the
600 to 2000 ms TOI separately for each ROI [i.e. the interval
following the P3 activity and preceding the next trial (San
Martín et al., 2013)]; if the resulting statistic exceeded a P-value
of 0.05, then that time point was included into a cluster that
was formed by including significant adjacent points. To extract
the t-value relating to the interaction term between the choice
and feedback, we subtracted the following conditions: (face gain
minus face loss) minus (house gain minus house loss). Cluster
statistics were obtained by summing all t-values within a cluster.
Statistical significance of a cluster was obtained by comparing
the cluster statistic to a permutation distribution (created from
1000 iterations by randomly switching the labels of conditions
at subject level) and was considered significant at P < 0.05 and
reported at a trend level if P < 0.1.

The cue-related attentional bias (N2pc) was measured from
200 to 300 ms after onset of the cue image pair, from corre-
sponding left and right occipital ROIs [channels (L/R): O1′/O2′,
PO3/PO4, PO7′/PO8′, P5i/P6i; Hickey et al., 2010; Kappenman and
Luck, 2012; San Martín et al., 2016). Subsequently, we calculated
the difference in voltage contralateral vs ipsilateral relative to
the side on which the set-winner was presented.

To calculate the behavioral learning rate and neural atten-
tional bias, we employed, on a trial-by-trial number basis, a
mixed-modeling approach using the lme4 statistical package
(Bates et al., 2015). A varying slope of condition per subject (the
random effect) was included in the model if the Akaike Informa-
tion Criterion (a measure of the quality of the model) improved.
To obtain statistical significance, the degrees of freedom were
approximated using the Satterwaithe approximation of degrees
of freedom as given by the R package lmertest (Kuznetsova et al.,
2017). Statistical tests were considered significant at P < 0.05.

1) proportion choosing set−winnern = β0
j[n]+β1.trial#j[n]+β2.trial#n

2+
β3.chosen + β4.trial#n × chosen + β5.trial#n

2 × chosen + εn

2) attentional biasn = β0
j[n] + β1.trial#j[n] + εn

In formula (1), the dependent variable ‘proportion’ reflects
the proportion of choosing the winner on each trial#n (1–20) and
the predictor variables consisted of an intercept, the first and
second degree polynomials for trial# (1–20 and 1:20 squared)
and chosen stimulus (face vs house). The polynomial term was

included in the model to account for non-linearities in the learn-
ing rate, notably that subjects’ performance gradually increases
early on in the block before tending to asymptote when the
most likely set-winner had been learned. In formula (2), the
attentional bias (in μV) reflected by the N2pc was estimated
by trial number (binned according to the average across two
consecutive trials to achieve better signal to noise). For both the
behavioral learning rate and neural attentional bias, the final
regression model allowed for a varying intercept and a varying
slope of trial number for each participant (as indicated by j).

Although we did analyze the choice behavior separately for
when participants chose house or face, we did not consider
choice behavior when analyzing the neural N2pc. The reason
for this is that if one calculates the N2pc (and its changes with
learning across a block) separately for when faces vs houses were
the set-winner, the lateralized attention-related N2pc activity
could be conflated with lateralized sensory differences between
faces and houses (including possible lateralized face-selective
N170 activity). However, by collapsing across face and house set-
winner blocks, we were able to assess the attentional orienting
activity independent of any lateralized sensory activity differ-
ences.

Results
Localizer task: three ROIs

The ERP difference waves between images of faces and houses
in the localizer task showed an early midline occipital positive
deflection that was larger for faces compared to houses and
largest over the midline electrodes (around Oz and POz), peaking
at around 110 ms. This face-selective early occipital positive
deflection has been described in previous studies (Eimer, 1998;
Itier and Taylor, 2004). Following this midline occipital positivity,
faces vs houses elicited the large, hallmark, face-selective N170
response (Bentin et al., 1996; Rossion and Jacques, 2012), which
started at ∼140 ms as a differential, bilateral, lateral-inferior
occipital negativity (although slightly larger on the right, as has
been typical) and peaking over the lateral inferior sites (PO9�

and PO10�) at around 160 ms and lasting until around 200 ms.
Shortly later, peaking at around 220 ms, we observed a second
smaller more superior bilateral negative-polarity deflection (P1p
and PO3, P2p and PO4) that was greater for faces compared to
houses. Lastly, after 300 ms, there was a temporally extended
activation over both the lateral inferior and superior occip-
ital scalp regions that showed a negative-polarity difference
between faces and houses. Observations of such a slower, longer-
latency face-selective effect have also been reported previously
(e.g. Harris et al., 2011).

Based on these observations of face-selective activity in our
localizer task, we defined three non-overlapping ROIs: (i) an
early midline occipital ROI (consisting of Oz and POz; Figure 2);
(ii) the hallmark, inferior-lateral-occipital face-selective ROI for
the N170 (consisting of inferior-lateral-occipital electrodes PO9�

and PO10�); (iii) and a superior bilateral one capturing the more
superior occipital effect (P1p and PO3, P2p and PO4). These ROIs
could potentially reflect activation from the OFA, FFA and the
STS (Pitcher et al., 2011), but due to the coarse spatial resolution
of EEG, we cannot make firm conclusions about the underlying
sources of these effects. More importantly, however, the localizer
results confirmed that our stimuli evoked hallmark patterns of
face-selective activity, including the midline occipital activation
and the lateral-inferior occipital ROI (midline positive deflection
and the N170). These ROIs, independently delineated by our sep-
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Fig. 2. Face-vs-house activity from the localizer task: differential activity for faces vs houses included the hallmark N170 negative-polarity response over ventrolateral

visual cortex (for face responses minus house responses), which was preceded by a midline occipital modulation, and followed by a more superior occipital activation.

arate localizer task, were then used to examine for modulations
of alpha oscillatory activity related to learning in the Plearn task.

Behavioral results and the development of attentional
biases toward the cue stimulus with higher reward
likelihood

The behavioral results from the Plearn task (Figure 3A and
Table 1) showed that, across each set of 20 trials, participants
were able to learn whether the face or the house was the
more likely winner for that set [main effect trial#: F(2,89) = 80,
P < 0.0001], which was not observably different for faces and
houses [main effect chose: F(1,1094) = 0.9, P = n.s., chose × trial#:
F(1,1094) = 0.5, P = n.s.]. At the beginning of each 20-trial set, the
participants chose the most likely winner for that set at chance
(0.50), as would be expected. But by the end of the set, this pro-
portion increased to ∼0.75, indicating that the participants had
utilized the feedback across the set to learn to choose the most
likely probability-based winner. In other words, participants
increased the probability of receiving gains by choosing faces
more often when the set-winner was a face and by choosing
houses more often when the set-winner was a house.

Neurally, at the moment of the presentation of the cue
stimuli, this learning process was reflected by attention-
sensitive lateralized N2pc activity evoked by the cue pair

stimulus (Figure 3B). More specifically, in the first half of each
20-trial set, the N2pc showed little or no reflection of attentional
orienting toward the probabilistic set winner stimulus type in
the cue-pair presentation, but in the second half of the set, there
was clearly an attentional bias, as reflected by a modulation of
the lateralized orienting-related N2pc contralateral to the set
winner. That is, consistent with previous studies showing with
these neural measures the attentional orienting toward reward-
associated stimuli (Hickey et al., 2010; San Martín et al., 2016),
during the learning of the reward-association here, a negative
deflection (200–300 ms) that increased in size over the course
of each set was elicited contralateral vs ipsilateral to the object
in the cue-pair stimulus that predicted a higher probability of
reward [F(1,106) = 7.1, P = 0.009].

In addition, in order to shed light on the link between the
N2pc and the choice regardless of whether or not learning had
been consolidated, we analyzed the effect of choice on the N2pc
over the course of the 20-trial set. Note that we collapsed over
whether the chosen image was that of a face or a house to
increase signal-to-noise ratio and because of potential sensory
differences in the processing of these images. We analyzed
the relationship between the N2pc elicited by the cue-pair
stimulus relative to the choice made later in the trial, regardless
of what the set-winner was (Figure 3C). Results showed a
contralateral negative deflection after the presentation of the
cue-pair stimulus that was present at the start of the 20-trial set
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Fig. 3. Behavioral and neural learning: during each set of 20 trials, stimulus–reward associations were induced through biasing the probability towards either the face

or house, with the probability bias ranging across blocks from 0.50 and 0.75. (A) As reflected by the increase in proportion of choosing the probabilistic set-winner

across the 20 trials of each set, participants learned whether either the face or the house was more likely to yield a gain. Note that there was no observable difference in

the learning curve for whether the set-winner was face or house. (B) Neurally, learning was reflected by an increasing amplitude of the attention-sensitive, lateralized

negative deflection (the N2pc) contralateral to the set-winner in the cue-pair presentation. This attention-sensitive lateralized ERP activity increased in amplitude as

a function of learning across the 20-trial set. (C) The size of the N2pc relative to the to-be-chosen side later on that trial across the 20-trial set. The size of the choice-

related N2pc reduced in size across the 20-trial block, suggesting that across the block, the N2pc became less strongly driven by the choice that will later be made on

the trial and more by the learned reward association. Shaded area represents 95% confidence interval of the model fit.
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Table 1. Model estimates for analysis of the behavioral learning rate: proportion choosing set − winnern = β0

j
[

n
] + β1.trial#

j
[

n
] + β2.trial#n

2 +

β3.chosen + β4.trial#n × chosen + β5.trial#n
2 × chosen + εn

The levels in each predictor was trial# 1:20 and chose face and house

Fixed effect Estimate (SE) t(df), P

β0

j
[

n
] 0.49 (0.02) 28.4 (54) < 0.001

β1.trial#
j
[

n
] 0.32 (0.003) 11.9 (437) < 0.001

β2.trial#n
2 −0.001 (0.0001) −8.5 (1094) < 0.001

β3.chosen (house) −0.01 (0.01) −0.9 (1094) = n.s.
β4.trial#n × chosen(house) 0.002 (0.002) 1.0 (1094) = n.s.
β5.trial#n

2 × chosen
(
house

) −0.0001 (0.0001) −0.9 (1094) = n.s.

[intercept: −0.65 μV, t(100) = −5.9, P < 0.001], but which reduced
in size over the course of the set [effect of trial#: 0.023 μV per
trial, t(260) = 2.9, P = 0.004] to an amplitude of −0.24 μV relative
to the later chosen side.

Feedback processing

ERP results: evaluation of losses vs gains. ERP analysis of feedback
processing focused on the feedback-evoked potentials and, more
precisely, the FRN and the P3. Based on previous literature, we
anticipated processing of losses vs gains would be reflected by
a larger FRN, with the later P3 wave also being larger follow-
ing losses. We analyzed the mean amplitude in the specified
ROIs and TOIs for feedback (loss and gain) and the choice prior
to receiving feedback (face and house). The feedback-elicited
ERPs confirmed these hypotheses (Figure 4A and B). Following
the feedback stimulus, the first difference between losses and
gains manifested itself as the hallmark, fronto-central, negative-
polarity FRN deflection from around 200 to 300 ms and peaking
around 250 ms [F(1,28) = 30.1, P < 0.0001]. Additionally, there was
no observable difference in the amplitude of the FRN as a func-
tion of whether the participant had chosen a face as compared
to a house on a trial, confirming that the FRN was sensitive to
a loss vs a gain and not to the particular stimulus type that
had been chosen [feedback × choice: F(1,28) = 0.3, P = n.s.].
Similarly, the P3 was larger for losses compared to gains, as has
previously been reported (San Martín et al., 2013) [F(1,28) = 22.5,
P < 0.0001]. In contrast to the FRN, the loss-vs-gain effect for
the feedback-elicited P3 did show some difference as a function
of the stimulus type that had been chosen [feedback × choice:
F(1,28) = 7.7, P = 0.01]. Specifically, contrasts with respect to this
interaction indicated that the P3 following losses was somewhat
larger when participants had chosen a house vs a face [t(28) = 3.0,
P = 0.006; 4.50 μV when choosing a house as compared to 4.02 μV
when choosing a face], with no difference for these choices
following a gain [t(28) = −0.1, P = n.s.; ∼3.22 μV for both].

Oscillatory EEG results: updating of stimulus–reward associations.
We had hypothesized that, following the generic (i.e. non-

stimulus–specific) feedback processing (i.e. reflected by the FRN
and, to a lesser extent, the P3), a more stimulus-specific cor-
tical signal, as measured by means of oscillatory alpha power,
would reflect processes related to the updating of specific stim-
ulus–reward associations in sensory regions in posterior cor-
tex. Specifically, we analyzed potential changes in alpha power
over time using cluster-based analysis in the face-specific ROIs
defined by the localizer task. Figure 5 shows the frequency spec-
tra for gains minus losses following feedback for when partic-
ipants had chosen a face vs when they had chosen a house,

along with the corresponding interaction effect (double differ-
ence wave). The frequency spectra in Figure 5 (corresponding
to the alpha-power traces in Figure 6A) and the alpha-power
topographical distributions (Figure 6B) indicate that there was
lower amplitude alpha (starting ∼900 ms after feedback onset)
following feedback of a gain as compared to a loss, both for
when a face had been chosen and when a house had been
chosen. These cluster-based analyses showed that during the
initial part of this time frame (∼900–1400 ms following feedback),
participants had lower alpha power following gains as compared
to losses within the inferior occipital ROI and occipital midline
ROI but not the superior occipital ROI (main effect of feedback:
inferior-lateral occipital: 900–1400 ms, P = 0.006; occipital mid-
line: 1000–1400 ms, P = 0.042; superior occipital: no significant
clusters found). In this earlier time period, however, significant
interactions with the stimulus type that had been chosen were
not observed.

In contrast, the longer-latency alpha effect over the face-
selective ROIs following the feedback was strikingly larger
and lasted longer when participants had chosen a face vs a
house. More specifically, topographical plots of alpha power
(Figure 6B: interaction between feedback and choice) showed
clear stimulus-related specificity for feedback processing
over the face-selective ROIs delineated by the localizer task,
suggesting the instantiation of stimulus-specific neural activity
during feedback processing in these face-specific cortical
regions. Specifically, for activity during this later post-feedback
time period (but well before the next cue stimulus pair), we
observed lower alpha power (i.e. higher cortical activation) for
gains as compared to losses when the participant had chosen a
face, an effect mostly absent when the participant had chosen
a house. This observation was confirmed by cluster-based
statistical analysis in the face-specific ROIs as defined by the
localizer task (Table 2).

Considering that decreased alpha power in a cortical region
typically reflects increased cortical activation (Laufs et al., 2003;
Mantini et al., 2007; Scheeringa et al., 2012; Green et al., 2017), this
pattern is consistent with the view that there was more cortical
activation in the face-processing areas after having chosen a face
and received feedback of a gain than after having chosen a house
and received feedback of a gain. In sum, the results revealed that,
in response to feedback of a gain vs a loss, there was an early
general (i.e. stimulus-nonspecific) posterior cortical activation
followed by a stimulus-specific one. It is important to note that
this stimulus-specific alpha modulation following the feedback
occurred even though the face/house stimuli had disappeared
from view several seconds earlier.
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Fig. 4. Generic feedback-elicited evaluation processes: (A) the grand ERPs to the feedback stimulus (grand averaged across subjects) for when the participant had chosen

a face or a house prior to receiving feedback concerning that choice. (B) Different waves and topographies reveal the feedback-valence registration as reflected by the

feedback-related ERP components (FRN and P3 response following feedback).The classic FRN loss-vs-gain effects showed little or no difference as a function of when

the stimulus chosen that trial had been a face or a house.

Discussion

In the present study, we sought to shed light on the neural
mechanisms by which stimulus–reward associations might be
updated in stimulus-specific cortex. We used a probability-
learning gambling task with feedback. On each trial, participants
chose between a face and a house stimulus and had to learn
across each set of 20 trials which stimulus had a higher
probability of gaining a reward in that set. Because face and
house stimuli elicit spatially distinctive neural activations in
scalp-recorded EEG, we were able to investigate the neural

processes related to stimulus-specific feedback processing in
the sensory cortices. Behaviorally, the results indicated that
participants were able to learn which stimulus yielded a higher
probability of reward in each 20-trial set. Neurally, this learning
was marked by a cascade of changes in the brain electrical
responses. First, feedback evaluation was most quickly reflected
at ∼250 ms by the FRN, a negative fronto-central deflection,
which was then followed by a modulation of the centroparietal
P3 (∼400 ms), likely reflecting a general increase in cognitive
resources. Both of these cortical activations were larger for losses
compared to gains. Subsequently (∼900–1400 ms after feedback
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Fig. 5. Stimulus-specific feedback-related processes—frequency spectra: (A) cortical updating of stimulus–reward associations: time-frequency plots of the differential

activity to the feedback stimulus following gains vs losses (note the subtraction direction here) over occipital channels in the face ROIs (previously delineated by the

localizer task), shown separately following having chosen a face vs having chosen a house. The plots reveal a difference in alpha power in these ROIs between 800

and 1800 ms following the feedback for gains vs losses, with the later part of this effect being significantly larger when participants had chosen a face as compared

to a house. (B) This late, cortically specific, alpha-power effect over the face areas can be seen more directly in the double subtraction (interaction) of activity, namely

gains-minus-losses for faces minus gains-minus-losses for houses.

Table 2. Cluster-based statistics related to the updating of stimulus-specific–reward associations in the alpha (8–14 Hz) frequency range

ROI
timewindow, P

Inferior-lateral occipital Midline occipital Superior occipital

Choosing × feedback 1400–1750 ms P = 0.042 1300–1850 ms P = 0.004 1400–1750 ms P = 0.008

Chose house: gain vs loss 950–1150 ms P = 0.098 — No sig. clusters — No sig. clusters

Chose face: gain vs loss 900–1900 ms P < 0.002 1000–2000 ms P = 0.004 1150–1850 ms P = 0.012

onset), we observed either a decrease (for gains) or increase
(for losses) of stimulus–non-specific posterior oscillatory alpha
activity that was mostly stimulus–non-specific, but this was

then followed by a strongly enhanced stimulus-specific activity
for gains compared to losses (∼1400–1800 ms) over the sensory
face areas when the participant had chosen a face, an effect
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Fig. 6. Stimulus-specific feedback-related processes—alpha power: (A) overall alpha-power traces show a stimulus-related decrease in power followed by an increase.

Cluster-based analysis revealed statistical significance for various contrasts. Shaded area represents mean ± SEM. (B) ROI-specific alpha-power traces following gain

minus loss feedback. The early part of this long-latency alpha modulation was stimulus–non-specific (no difference for whether a face vs a house had been chosen on

that trial). Later, the alpha activity showed strong stimulus-specific differences between gain and loss trials as a function of whether a face vs a house had been chose

on that trial.

that was mostly absent when they had chosen a house. Then
on the next trial, the learning was further marked by a rapid
attentional orienting towards the more-likely-to-be-rewarded
stimulus when these stimuli were later presented as a cue pair,
an effect that increased across the 20-trial set. These results
expand our understanding of the cortical mechanisms by which
stimulus-specific regions are activated during feedback learning
in service of establishing and/or updating stimulus–reward
associations.

Classically, the cascade of neural processes underlying feed-
back processing has been delineated as starting with feedback
evaluation, as reflected by the FRN component for losses relative
to gains, and continuing with a general increase in cognitive
resources, as reflected by an enhanced P3 wave (Polich, 2007;
San Martín, 2012), if the feedback indicated a suboptimal out-
come and thus that the choice behavior potentially needs to
be adjusted (O’Connell et al., 2012; Fischer and Ullsperger, 2013).
These effects were also seen in the present study. We also
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showed here that the FRN activity was stimulus non-specific, in
that it did not differ as a function of whether the feedback was
preceded by a face or a house selection. This result is consistent
with the idea that the ACC, a likely contributor to the FRN
(Gehring and Willoughby, 2002), reflects the detection/evaluation
of outcome information independent of the specific stimulus
and/or event context (Heilbronner and Hayden, 2016). Although
the P3 was slightly larger for losses after choosing a house,
compared to choosing a face, it did not differ when the feedback
was a gain.

Alpha-power effects began as a general posterior cortical
activation, greater for gains compared to losses, but irrespective
of whether participants had chosen a face or a house. This effect
might be regarded as an increased activation of visual processing
regions following gain feedback. Following this general visual
cortex activation, between 1400–1800 ms following feedback
after having made a face choice, we observed activity over the
sensory face regions that was substantially larger following gain
feedback compared to loss feedback, with the corresponding
effect not being observed following gain-vs-loss feedback after
participants had chosen a house. Importantly, this stimulus-
specific activation occurred even though the face (vs house)
stimuli had disappeared from the screen seconds before. The
activation pattern suggests that these effects, occurring over the
occipital-midline, occipital-superior and occipital-inferior face-
selective localizer-defined ROIs, potentially reflect activity in
the OFA, STS and FFA, which have all been found to selectively
process face stimuli (Gobbini and Haxby, 2007; Pitcher et al., 2011).
We should mention that the results from the superior-occipital
ROI should be interpreted with caution because this activity
pattern from the independent localizer task does not appear to
have been reported in previous studies. However, because we
found this ROI activated in our independent localizer task, we
included it in the analysis for completeness.

In the context of these results, we interpret the reduced alpha
power over the face ROIs after a gain following a face choice
to reflect cortical activation in the face-processing–selective
cortical brain regions, as part of the establishing, updating and
storage of stimulus–reward associations. Arguably this principle
extends to a general mechanism of cortical updating for
stimulus–reward association for any stimulus type with respect
to feedback. It seems likely that as feedback-guided updating
establishes and strengthens stimulus–reward associations,
the brain also establishes and strengthens a subsequent
reactive attentional bias toward the more-likely-to-be-rewarded
stimulus. In our results, this manifested as an enhanced N2pc
towards the stimulus that is more likely to win on its next
presentation in the cue image pair, paralleling the increased
chance that this stimulus would be chosen subsequently at the
choice screen. To directly test if changes in alpha power were
predictive of changes in the N2pc, we conducted an additional
analysis examining the trial-to-trial correlation between the two.
The results from this analysis were insufficiently conclusive,
perhaps due to a lack of power. Accordingly, the direct
trial-to-trial interpretation outlined above warrants further
investigation.

The findings of the N2pc being influenced by reward learning
are in line with previous studies investigating effects of reward
on attentional orienting, which have similarly shown that once a
stimulus–reward association has been learned, it tends to induce
a larger attentional shift when presented and also predicts the
likelihood of subsequent choice behavior (Hickey et al., 2010;
Hickey and van Zoest, 2012; San Martín et al., 2016). Our results
substantiate these findings by implicating a key role of the

sensory cortices in the cascade of processes involved in the
formation and neural updating of stimulus–reward associations.

To explore if the attentional bias as marked by the N2pc (at
choice-cue presentation) relative to the set-winner was driven
by the learned reward association rather than by the increasing
likelihood of that choice being made later in the trial, we looked
at the effect of trial number on the size of the N2pc relative
to the to-be-chosen side. If the N2pc was mainly predictive of
the later choice, then the choice-related N2pc should not reduce
in size over the course of the set. The results showed an N2pc
towards the later chosen side both at the beginning and end
of the 20-trial set. However, the size of the choice-related N2pc
decreased in size over the course of the set, in contrast to the
increase in size of the N2pc across the set towards the rewarding
stimulus. This finding supports the interpretation of the N2pc
for learned reward association, where the reduction in N2pc
for the to-be-chosen side over time suggests that the learned
reward association was the stronger factor driving the N2pc
rather than just the choice that will be made. We interpret this
finding as follows: at the beginning of the set, before the subjects
had learned the more rewarding stimulus for that set, their
attention and choice behavior was driven by factors other than
learned reward association. However, as the reward association
was being learned, attention became more and more biased
towards the winning feature (either face or house), as shown
by an N2pc relative to the learned set-winner later in the 20-
trial set. By the end of the set, the choice and bias went hand-
in-hand on about 75% of the trials. On the other 25% of the
trials, attention still tended to be biased towards the set-winner,
but we speculate that participants decided to explore the other
option as part of an exploration strategy. In general, it has been
shown that participants’ behavioral choices on these types of
learning tasks tend to match the probabilities (Herrnstein, 1961;
Sugrue et al., 2004). If participants indeed explored the other
option following the learned stimulus–reward attentional bias,
this behavior would result in a decreasing N2pc towards the
chosen side later in the 20-trial set.

In response to stimulus-specific areas being activated follow-
ing rewarded trials for those stimulus types, the brain seems to
then bias attention towards those stimuli. One possibility would
be that these stimulus-specific activations reflect a saliency
adjustment of the rewarding objects. That is, in addition to
coding for stimuli and features, it has been hypothesized that
the visual system contains a saliency map for objects and their
features (Itti and Koch, 2000; Itti et al., 2001). Such a saliency map
could serve as a prioritizing scheme that codes for the impor-
tance of various stimuli. By adjusting the saliency of each object
category (here, faces or houses), the brain would prioritize the
processing of certain objects over other ones. The neuroanatom-
ical properties and location of such saliency maps are under
debate, but there is evidence of involvement of sensory visual
areas (Li, 2002; Mazer and Gallant, 2003; Torralba et al., 2006;
Madden, 2007; Çukur et al., 2013). If indeed the observed cortical
activation in response to feedback information is a reflection
of saliency map adjustment, then the results from the present
study would have implications for understanding the mecha-
nisms by which previously encountered outcome information
might be involved in attentional prioritization and cognitive
control more generally.

The present study examined mechanisms underlying the
learning of reward associations along a relatively short stretch
of trials (i.e. each set of 20 trials lasting several minutes), which
would then change in the next stretch. Long-term learning in
a stable environment would typically lead to value information
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being updated much more slowly. Notably, learning of object val-
ues with different stabilities has been shown to impact activity
in the subcortical regions differentially (Kim and Hikosaka, 2013),
suggesting different neural mechanisms may be involved based
on how stable the learning environment is. Thus, understanding
how the processes delineated in this paper differ relative to
within a more stable environment would be an important goal
for future studies.

In conclusion, we have shown that in response to posi-
tive feedback to choices made on specific stimulus types, the
brain activates the sensory cortical regions coding for those spe-
cific stimulus types. This activation appears to reflect processes
related to the establishment and neural updating in stimulus-
specific cortical brain regions of the reward associations for
those specific stimuli, perhaps by way of enhancing their rep-
resentation in a cortically based saliency map. Moreover, the
establishment and updating of these reward associations in
stimulus-specific cortical processing regions during learning is
followed in time, on average across trials, by stronger orienting
of attention towards those stimuli when they are next encoun-
tered. Accordingly, we speculate that the cortical updating in
the sensory cortices plays a key role in shaping future choice
behavior with respect to those stimuli. We caution that our
data cannot establish a direct causal link between these effects,
however, as they were shown independently without statistical
relations being demonstrated. Future research will need to be
performed in order to establish such a causal link.
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