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Abstract: Multivariate functional connectivity analyses of neuroimaging data have revealed the impor-
tance of complex, distributed interactions between disparate yet interdependent brain regions. Recent
work has shown that topological properties of functional brain networks are associated with individual
and group differences in cognitive performance, including in episodic memory. After constructing
functional whole-brain networks derived from an event-related fMRI study of memory retrieval, we
examined differences in functional brain network architecture between forgotten and remembered
words. This study yielded three main findings. First, graph theory analyses showed that successfully
remembering compared to forgetting was associated with significant changes in the connectivity profile
of the left hippocampus and a corresponding increase in efficient communication with the rest of the
brain. Second, bivariate functional connectivity analyses indicated stronger interactions between the
left hippocampus and a retrieval assembly for remembered versus forgotten items. This assembly
included the left precuneus, left caudate, bilateral supramarginal gyrus, and the bilateral dorsolateral
superior frontal gyrus. Integrative properties of the retrieval assembly were greater for remembered
than forgotten items. Third, whole-brain modularity analyses revealed that successful memory retrieval
was marginally significantly associated with a less segregated modular architecture in the network.
The magnitude of the decreases in modularity between remembered and forgotten conditions was
related to memory performance. These findings indicate that increases in integrative properties at the
nodal, retrieval assembly, and whole-brain topological levels facilitate memory retrieval, while also
underscoring the potential of multivariate brain connectivity approaches for providing valuable new
insights into the neural bases of memory processes. Hum Brain Mapp 38:2242–2259, 2017. VC 2017 Wiley

Periodicals, Inc.
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INTRODUCTION

The human brain is a large-scale complex system com-
prised of diverse yet interconnected brain regions [Bull-
more and Sporns, 2009]. Most existing neuroimaging
research investigating the neural bases of cognitive pro-
cesses has focused on the localization of specific functions
using univariate activation methodologies. For example,
consistently observed increases in hippocampal activity
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during memory retrieval tasks for remembered versus for-
gotten items suggest that the hippocampus is critical for
successful episodic memory retrieval [Kim, 2010, 2013;
Rugg and Vilburg, 2013; Spaniol et al., 2009]. This corpus
of work has focused on identifying particular brain regions
thought to be involved in certain cognitive processes.
However, individual regions, such as the hippocampus,
can only support episodic memory by dynamically inter-
acting with other diverse and spatially distributed brain
regions [Geib et al., 2015; Jeong et al., 2015; Mi�sić et al.,
2014; Watrous and Ekstrom, 2015]. In this study, we used
graph theory measures to investigate how complex pat-
terns of functional interactions at different topological lev-
els underlie episodic memory retrieval for words.

Graph theory provides a particularly powerful frame-
work for characterizing brain networks derived from func-
tional neuroimaging data [Bullmore and Sporns, 2009;
Rubinov and Sporns, 2010]. Using the mathematical for-
malisms of graph theory, networks of brain regions can be
represented as graphs consisting of a set of nodes with the
pairwise relationships between them, known as edges. In
functional neuroimaging analyses, each node represents a
discrete brain region, and the edges represent the mea-
sured functional connectivity between pairs of nodes.

There is general agreement that healthy and effective
brain network architectures require both segregated and
integrative processing [Bassett and Bullmore, 2006; Bress-
ler and Menon, 2010; Medaglia et al., 2015; Sporns, 2013;
Tononi et al., 1994]. Segregation refers to specialized proc-
essing within an individual brain region [Tononi et al.,
1994] or within a small subset of tightly interconnected
regions [Bullmore and Sporns, 2009]. In contrast, integra-
tion refers to the assimilation and transfer of information
between specialized, spatially distributed brain regions
[Rubinov and Sporns, 2010; Sporns, 2013]. In this article,
we focus on the importance of integrative properties in
functional brain networks during episodic memory
retrieval.

Most graph theory analyses of functional neuroimaging
data have investigated network topology during resting
state [e.g., Buckner et al., 2009; Hayasaka and Laurienti,
2010; He et al., 2009; Moussa et al., 2012; Stevens et al.,
2012; van den Heuvel et al., 2009], with relatively few
studies having investigated alterations in network topolo-
gy during cognitive tasks. Among the studies that have
linked graph theory measures to cognitive performance on
a task [e.g., Bassett et al., 2011; Braun et al., 2015; Cao
et al., 2014; Meunier et al., 2014; Moussa et al., 2011, 2014;
Stanley et al., 2014, 2015], only three have investigated pat-
terns of functional network topology subserving episodic
memory [Geib et al., 2015; King et al., 2015; Schedlbauer
et al., 2014]. In particular, Schedlbauer et al. [2014] showed
that a substantial proportion of the shortest topological
paths between disparate brain regions pass through the
hippocampus to support successful memory retrieval.
King et al. [2015] showed that a subset of brain regions—a

priori identified from previous activation analyses as being
involved in memory retrieval—become more strongly con-
nected with one another to support successful remember-
ing and that the strength of these connections is related to
recollection accuracy. Lastly, Geib et al. [2015] showed that
the hippocampus, embedded within the whole-brain net-
work, reorganized its set of functional connections, dis-
played greater communication efficiency with the rest of
the brain, and became a more convergent structure for
information integration supporting vivid, compared to
dim, retrieval of visual scenes. All of these studies under-
score the importance of integrative processing for success-
ful memory retrieval, expanding beyond prior emphasis
on segregated processing.

To support episodic memory retrieval, recent work has
shown that the hippocampus participates in more efficient
communication with many other brain regions and serves
as the critical integrative structure for the convergence and
joint processing of information [Battaglia et al., 2011; Geib
et al., 2015; Mi�sić et al., 2014; Watrous and Ekstrom, 2015].
However, this prior work has largely focused on the role
of an individual node (i.e., the hippocampus) embedded
within a larger network. This study builds on this prior
work by characterizing network architecture at three dif-
ferent organizational levels: a nodal level, a subnetwork or
retrieval assembly level, and the whole-brain network lev-
el. We maintain that the hippocampus serves as a critical
integrative structure for successful memory retrieval, but
we also suggest that the functional interactions of the hip-
pocampus with a retrieval assembly facilitates efficient
integrative processing and successful memory retrieval.
We define a retrieval assembly as a subset of network
nodes that become more strongly connected with the hip-
pocampus during remembered trials compared with for-
gotten trials. Furthermore, prior work has also suggested
that the extent to which the functional network as a whole
exhibits certain integrative properties facilitates successful
memory retrieval [Geib et al., 2015].

Specifically, we made three primary hypotheses in this
study. First, extending prior work investigating topological
properties of the hippocampus embedded within the
entire functional brain network [Geib et al., 2015; Sched-
lbauer et al. 2014], we hypothesized that the hippocampus
would exhibit an increase in its role in integrative process-
ing (i.e., more efficient communication with the rest of the
brain) for remembered versus forgotten items.

Second, we hypothesized that successfully remembering
compared to forgetting items would be associated with
stronger connectivity between the hippocampus and a sub-
set of regions involved in memory retrieval, subsequently
identified as a “retrieval assembly.” More specifically, we
hypothesized that certain subregions within the prefrontal
cortex (PFC) and the ventral parietal cortex (VPC) would
serve as nodes in this retrieval assembly. We do not
include a manipulation to assess the expected contribu-
tions of these regions to memory retrieval; their
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hypothesized roles in the retrieval assembly are based
upon previous findings on similar kinds of memory
retrieval tasks. The PFC is thought to support retrieval
control processes, such as retrieval search and monitoring
[Anderson et al., 2015; Preston and Eichenbaum, 2013;
Wagner et al., 2005], and the VPC is thought to mediate
attentional processes involved in memory retrieval
[Cabeza et al., 2008; Ciaramelli et al., 2008]. There is also
mounting evidence from bivariate functional connectivity
analyses indicating that both PFC [Blumenfeld and Ranga-
nath, 2007; Preston and Eichenbaum, 2013] and VPC [King
et al., 2015; Robin et al., 2015] are functionally connected
to the hippocampus during episodic retrieval. Additional-
ly, we hypothesized that this retrieval assembly would
exhibit increased integration with the rest of the brain for
remembered compared with forgotten items.

Third, extending prior work showing that increased
overall whole-brain integrative processing is closely relat-
ed to cognitive performance [Cao et al., 2014; Geib et al.,
2015; Meunier et al., 2014; Stanley et al., 2014, 2015; Ste-
vens et al., 2012; van den Heuvel et al., 2009), we hypothe-
sized that successful memory retrieval would be
associated with a more globally integrated (and less segre-
gated) network architecture across the entire brain. To
address this question, we implemented data-driven modu-
larity algorithms to assess the relative balance between
segregated and integrative network architectures in
remembered and forgotten episodic memory retrieval
networks.

METHODS

Participants

Nineteen right-handed healthy young adult participants
(mean age 5 22.29 years, SD 5 3.20, age range 5 [18, 30], 7
female, 12 male) completed the experiment. Participants
with a history of neurological difficulties or psychiatric ill-
ness, alcoholism, drug abuse, or learning disabilities were
excluded from the study. Due to technical problems dur-
ing data acquisition, two subjects were excluded from the
analyses: one lacked functional data, and the other lacked
behavioral data. All analyses were performed on the
remaining 17 participants. Written informed consent was
obtained from each participant in accordance with a proto-
col approved by the Duke University Institutional Review
Board. All participants were monetarily compensated for
their time.

Experimental Design

Three-hundred sixty concrete nouns were chosen from
the MRC Psycholinguistic Database (http://www.psy.
uwa.edu.au/MRCDataBase/uwa_mrc.htm) and used as
stimuli. During the encoding task, a total of 240 words
was presented, equally divided across 4 functional runs.

Each run included five on-blocks (task being performed,
60 s each) and 6 off-blocks (rest, 15 s each). During each
on-block, participants were presented with 12 words seri-
ally, for a duration of 2 s each. During the first two encod-
ing runs, the participants were asked to make an animacy
decision for each word (i.e., living/nonliving). Each word
was presented in the center of the screen, and the living/
nonliving choice was symmetrically placed to the left and
right below each word. During the last two encoding runs
of the four, participants were asked to read and remember
each word and press the button corresponding to the loca-
tion of the word “press” after they had completed reading
the word. Again, the stimulus word was presented in the
center of the screen and the two options for responding at
the bottom of the screen (“press” and “xxxxx”) were even-
ly spaced below each word. Button responses and
response times were recorded using a magnetically
shielded 4-button box held in the participant’s right hand.
Stimuli were separated with a jittered inter-stimulus-
interval (ISI), which ranged from 1 to 4 s to facilitate
deconvolution and extraction of the hemodynamic
response. Off-block stimuli consisted of a continuously
presented crosshair figure at fixation, which was also used
for memory-task on-block ISI periods.

The encoding runs were followed by 20 min of anatomi-
cal and DTI scanning. Participants then completed a recog-
nition test in the scanner. Across six retrieval runs,
participants were presented with each of the 240 words
that had been presented during encoding along with 120
new words. Word duration, ISI distribution, block length,
and block order mirrored that of encoding. In response to
each presented word, participants were asked to make an
old/new judgment and indicate their confidence in that
judgment (definitely old, probably old, probably new, defi-
nitely new). Again, words were presented one at a time in
the center of a computer screen. The old/new confidence
judgment was displayed below each word, and partici-
pants pressed a corresponding key to indicate whether the
word was definitely old, probably old, probably new, or
definitely new. This study was based on retrieval trials for
the encoding trials for which they were explicitly told to
remember the word (i.e., runs 3 and 4).

Data Acquisition and Preprocessing

Imaging data were collected on a 3T GE scanner. Fol-
lowing a localizer scan, functional images were acquired
using a SENSE spiral-in sequence (TR 5 2000 ms, TE 5 27
ms, FOV 5 24 cm, 34 oblique slices with voxel dimensions
of 3.75 3 3.75 3 3.8 mm). Stimuli were projected onto a
mirror at the back of the scanner bore, and responses were
recorded using a 4-button fiber optic response box. Scan-
ner noise was reduced with ear plugs and head motion
was minimized with foam pads. A high-resolution ana-
tomical image (96 axial slices parallel to the AC-PC plane
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with voxel dimensions of 0.9 3 0.9 3 1.9 mm) was collect-
ed following the functional scanning.

Following acquisition, each participant’s volumes were
slice-time corrected, realigned to the first volume, and nor-
malized to a standard EPI template in SPM8. Single-trial
beta estimates of the event-related hemodynamic
responses were computed using a method recently devel-
oped by Mumford et al. [2012] that better represents true
activation magnitudes in fast event-related designs. This
method estimates a first-level model for every trial such
that the trial of interest serves as one regressor and all oth-
er trials serve as another regressor. Single-trial estimates
also included six motion regressors (x-dim, y-dim, z-dim,
roll, pitch, and yaw) in addition to block-wise run regres-
sors. Following single-trial estimation, each voxel’s time
series was winsorized at three standard deviations above
and below the mean. Overall translational movement
(Euclidian distance from the origin) was minimal M 5

0.31 (SD 5 0.16 mm). Additionally, only 5% of the volumes
had motion exceeding 1 mm and <1% of the volumes had
motion exceeding 2 mm. Therefore, the effects of motion
were negligible.

Generating Whole Brain Networks

To create episodic retrieval networks, we used a beta
time-series analysis, which assumes that two regions are
functionally coupled during a task if their activity is signifi-
cantly correlated across trials [Fornito et al., 2011; Rissman
et al., 2004; Schedlbauer et al., 2014]. Each beta value
reflected the magnitude of the hemodynamic response
evoked by a particular trial during the retrieval phase of the
procedure. These observed beta values were then sorted for
each individual participant separately in accordance with
memory performance during the corresponding trial during
the retrieval phase of the experiment. “Definitely old”
responses to old items constituted the remembered-trial cat-
egory. “Probably new” and “definitely new” responses to
old items were used together to constitute the forgotten-trial
category. “Probably old” responses were not included in
order maximize the memory signal and to ensure that the
number of remembered-trials was not significantly different
from the number of forgotten-trials (t(16) 5 21.56, P> 0.10).
We focused on high-confidence hits and compared to misses
to emphasize the contributions of the hippocampus in mem-
ory retrieval for the following reasons: (1) hippocampal
activity is greater for definitely old than probably old, (2)
only high-confidence responses activate the hippocampus,
and (3) correct rejections elicit novelty-related activity in the
hippocampus thereby subtracting out recollection-related
activity [e.g., Daselaar et al., 2006]. Additionally, networks
constructed using beta-series connectivity have been shown
to have the advantage of being more sensitive to variability
in the shape of hemodynamic response compared with
psychophysiological-interaction analyses [Cisler et al.,

2014]; this advantage is particularly important for whole-
brain connectivity analyses [Handwerker et al., 2004].

To measure functional connectivity between all regions
simultaneously, the brain was first parcellated into 90 dis-
crete anatomical regions of interest defined in accordance
with the automated anatomical labeling (AAL) atlas (45
ROIs in each hemisphere with the exclusion of all cerebellar
nodes) [Tzourio-Mazoyer et al., 2002]. This AAL template
has been the most widely used nodal partitioning scheme in
functional brain network analyses [Stanley et al., 2013], and
it parcellates the cortex and subcortical structures by identi-
fying gyral and sulcal boundaries. However, it is important
to note that many other nodal partitioning schemes have
been used in the literature, and the best possible method for
defining nodes remains an open question [Stanley et al.,
2013]. Each anatomical ROI from the atlas served as a net-
work node. Pairwise Pearson correlations between regional
mean beta series were computed to generate {90 3 90} func-
tional connectivity matrices, with the correlation coefficients
representing the strength in connectivity between any two
nodes. These {90 3 90} cross-correlation matrices (i.e., adja-
cency matrices) serve as the fundamental starting point for
any graph theoretic analysis of neuroimaging data. In this
study, the adjacency matrices were not thresholded (i.e.,
weak connections were not removed), and each matrix con-
stituted an undirected, weighted graph. Two separate
whole-brain functional networks were created for each indi-
vidual participant: a forgotten network constructed using
the concatenated beta values from forgotten-trial category
and a remembered network constructed using the
concatenated beta values from the remembered-trial catego-
ry. For display purposes, Figure 1 depicts remembered and
forgotten adjacency matrices extracted from this approach,
averaged across all participants.

Graph Theory Measures

Global efficiency

Global efficiency is a measure of the capacity for efficient
information transfer throughout the entirety of a network. It
is closely related to another widely used graph metric—path
length. When computed for an individual node in the net-
work, path length is defined as the average shortest distance
between that node i and all other nodes in the network. In
weighted functional brain networks, connections with
higher correlation strengths are considered to be closer
together, whereas nodes with lower correlation strengths
are considered to be further apart. A node’s global efficiency
is defined as the average of the inverse characteristic path
length between that node and all other nodes in the network
[Rubinov and Sporns, 2010], such that higher global efficien-
cy corresponds to shorter path lengths. In the formulation
given below, dw

ij represents the distance between two nodes
in the network after taking into account the strength of each
connection. The network-wide global efficiency is computed
as an average of all nodal-wise global efficiency values.
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Negative connections were not included in the global effi-
ciency analyses (for reasons noted in Telesford et al. [2011]
and Cao et al. [2014]). It is important to note that we are not
using the term “distance” in a Euclidian sense. Distance here
is a measure of how easily information may get from one
node to another. Given this particular interpretation, using
correlation strength as a measure of distance is reasonable,
because information is more likely to travel (with less added
noise) between two nodes that are strongly correlated.

Degree centrality

Degree centrality indexes the overall strength of a given
node’s connections by summing the weights of all its con-
nections [Bullmore and Sporns, 2009]. Nodes with high
degree centrality tend to directly interact with many other
nodes in the network and are likely to play an important
role in the flow of information throughout the network. To
better compare results between global efficiency and
degree centrality, only positive connections were included
in the calculation of degree centrality for each network
node. However, for all other computations, negative con-
nections were retained in the functional brain networks.

Nodal change score

Nodal change scores [Geib et al., 2015] index the extent
to which a node’s graph theory metric changes relative to
other nodes in the network and are computed by z-scoring
graph theory measures within subjects and then

subsequently computing the normalized difference
between remembered and forgotten networks. This proce-
dure was implemented for global efficiency and degree
centrality. A large nodal change score indicates that a
node has become more central to the network between
conditions independently of large-scale network changes.

First step reorganization (FSR)

Metrics such as global efficiency and degree centrality
assess a node’s capacity for information transfer, but they do
not provide information about the extent to which a node
reorganizes its set of direct connections. Observed differ-
ences in nodal network properties (e.g., global efficiency) can
only be explained by appealing to two factors: (1) a reorgani-
zation of first step (direct) functional connections and/or (2)
a reorganization of indirect functional connections (beyond
first step) that influence the value of the graph metric com-
puted for the node of interest. FSR [Geib et al., 2015] can be
used to partially disambiguate the extent to which direct ver-
sus indirect functional connections contribute to observed
differences in graph theory metrics across conditions by
determining whether direct (first step) functional connec-
tions significantly change between conditions (e.g., remem-
bered and forgotten retrieval networks). More specifically,
FSR is a network-normalized, negative, Fisher-transformed
correlation computed between two columns of an adjacency
matrix. Mathematically, FSR is computed as follows:

FSRw5zscore 2arctanh
Cov Ai;Bið Þ

rAi
rBi

� �� �

where Ai is the connectivity profile of node i in network
A, Bi is the connectivity profile of node i in network B,

Figure 1.

Average (across participants) adjacency matrices derived from beta series correlations are repre-

sented for remembered and forgotten networks and split by hemisphere (right and left). For

ease of visualization, regions of interest are sorted in accordance with the procedure imple-

mented by Salvador et al. [2005]. [Color figure can be viewed at wileyonlinelibrary.com]
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and the connectivity profile of node i is defined as its dis-
tinct set of weighted connections (i.e., the column in the
adjacency matrix representing that particular node’s con-
nections with all other nodes in the network). Due to the
normalization procedure (z-score), the FSRw

i value
obtained for a given node is always relative to those FSR
values obtained for the other nodes in the network. Tradi-
tional parametric statistics can then be applied at the
group level in order to identify nodes that consistently
exhibit a reorganization of direct connections across
participants.

Modularity (Q)

Modularity is computed using an optimization algo-
rithm that identifies subsets of nodes that are more dense-
ly interconnected among themselves than with other
nodes in the network [Blondel et al., 2008; Newman, 2006;
Newman and Girvan, 2004]. The extent to which the net-
work can be subdivided into nonoverlapping modules is
quantified by the modularity Q statistic. Networks that
can be clearly divided into nonoverlapping modules, or
functional communities, have larger Q values and are con-
sidered less integrated (i.e., more segregated) with the rest
of the functional brain network. In contrast, networks that
are not so clearly divided into distinctive functional com-
munities have smaller Q values and are considered more
integrated with the rest of the functional brain network.
The modularity value assigned to a given partition of the
entire functional brain network is:

Q5
Xk

i51

eij

M
2

ai

M

� �2
� 	

where ei,j is a measure of within module connections in
module i, ai is the total degree (summed strength of all
connections that a node has) of module i, and M is equal
to the degree of the entire network. Modularity algorithms
are designed to maximize the value of Q, by separating
the network into nonoverlapping subsets of nodes that
maximize within-module connectivity and minimize
between-module connectivity. In the current study, in
order to find the maximal value of Q, the weighted undi-
rected Louvain algorithm was run 10 times on each indi-
vidual subject’s remembered and forgotten network
[Blondel et al., 2008].

In contrast, a node’s modular assignment was deter-
mined by running the Louvain algorithm 1,000 times on
the averaged (across participants) remembered network.
The averaged remembered network was used, as opposed
to a general retrieval network that includes both remem-
bered and forgotten trials, because the condition of interest
is successful memory retrieval as opposed to a more gen-
eral retrieval processing mode. The resulting 1,000 parti-
tions were then divided into two groups based upon the
number of modules discovered (i.e., networks with 5 mod-
ules and networks with 4 modules). These groups were

then separately analyzed using the Jaccard Index (JI) to
determine to the consistency of the module assignments
across different iterations of the algorithm. The most con-
sistently identified modular partition and the Q value itself
were both considered in order to identify the best partition
for further analyses.

Participation coefficient (PC)

The positive PC measures the proportion of connections
a node has within its own module versus other modules
in the network [Guimer�a and Nunes Amaral, 2005]. Nodes
with higher PCs are more strongly connected to nodes in
other modules in the network, thereby facilitating commu-
nication between functional communities; in contrast,
nodes with lower PCs are predominantly connected to
nodes within the module to which they were assigned.
Formally, a node’s PC is defined as:

12
X
m2M

kw
i mð Þ
kw

i

� �2

where M is the set of modules, and kw
i is the weighted

number of links between node i and all the other nodes in
module m. The PC is computed independently for positive
and negative connections, and we only report results from
the positive PC. After we first identified the best modular
partition using the averaged (across participants) remem-
bered network, we then used that modular partition as a
fixed template when computing PCs within each individu-
al participant’s functional brain networks.

Retrieval Assembly Construction

To further investigate changes in graph theory metrics
computed for the hippocampus, we identified a retrieval

assembly defined as a set of regions (i.e., nodes) whose
bivariate connectivity with the hippocampus was stronger
during remembered than forgotten trials. These retrieval
assembly nodes were identified by finding regions with a
significant within-subject change in connectivity strength
(t-test, alpha 5 0.01, one-tailed, unc.) with the hippocam-
pus. We intentionally used a relatively liberal, fixed alpha
level, because these analyses were exploratory in nature.
Additionally, compared to the remembered network and
the forgotten network, which were constructed for each
individual participant and comprised all nodes in the 90-
node AAL atlas in addition to all of their pairwise connec-
tions, the retrieval assembly is only comprised of the sub-
set of those 90 nodes that alter their connectivity with the
hippocampus between remembered and forgotten condi-
tions. Consequently, there is only one retrieval assembly,
because the assembly represents the subset of nodes with
connections that change between remembered and forgot-
ten conditions.
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Statistical Testing of Graph Theory Measures

We used the permutation framework developed by
Simpson et al. [2013] in conjunction with the Jaccardized
Czekanowski Index [Schubert, 2013; Schubert and Telcs,
2014] to assess significance for potential differences in
each graph theory measure between remembered and for-
gotten memory retrieval conditions. This framework is
based on the JI, which computes a ratio between two dis-
crete data sets based upon the size of the intersection and
union between those two sets. The permutation framework
developed by Simpson et al. [2013] can accommodate con-
tinuous values (numeric values) and utilizes a permutation
procedure to access significance. This permutation frame-
work is non-parametric, and we report median values and
interquartile ranges (IQR) for global efficiency, degree cen-
trality, modularity (Q), and PC. Violin plots were used to
visualize these distributions mapped on top of box plots.
For all box plots the middle band represents the median,
the top of the box the 75th percentile, the bottom of the
box the 25th percentile, and whiskers extend to an addi-
tional 1.5*IQR.

RESULTS

Behavioral Results

Indicative of accurate memory performance, there was a
significant difference between the accuracy of high-
confidence correctly recognized items and false alarms
(t(32) 5 10.7, P< 0.0001), as well as between all correctly
recalled items and false alarms (t(32) 5 9.9, P< 0.0001).
Memory strength (d0) across all correctly recalled items
and false alarms was M 5 1.0 (SD 5 0.5). A summary of
behavioral results is provided in Table I.

Network Results

Hippocampal integration is greater for remembered

than forgotten items

Our first hypothesis was that the hippocampus would
show an increase in its capacity for efficient integration
with the rest of the network for remembered compared
with forgotten items. Consistent with our first hypothesis,
there was a significant increase in global efficiency
(P 5 0.02) and degree centrality (P 5 0.04) for the left
hippocampus from forgotten to remembered retrieval net-
works, as revealed by the permutation procedure devel-
oped by Simpson et al. [2013] in conjunction with the
Jaccardized Czekanowski Index. Only the global efficiency
result remained significant after Bonferroni correction for
running tests on both the left and right hippocampus. In
contrast, no significant differences in global efficiency or
degree centrality were identified for the right hippocam-
pus (both P’s> 0.10; Fig. 2).

Even though stark shifts in nodal network properties
can only be explained by appealing to the entire network
architecture, these shifts occur because of (1) the reorgani-
zation of connectivity strengths for the set of first step (i.e.,
direct) connections and/or (2) the reorganization of con-
nectivity patterns beyond first-step connections (i.e., indi-
rect connections). The FSR analysis was used to clarify the
extent to which direct changes in functional connectivity
contribute to the observed changes in global efficiency for
the left hippocampus. FSR was significant for the left hip-
pocampus (FSR 5 0.63, t(16) 5 2.37, P 5 0.03), indicating
that the left hippocampus significantly reorganized its set
of direct connections between remembered and forgotten
conditions.

To test the specificity of the identified increases in global
efficiency and degree centrality for the left hippocampus
for remembered minus forgotten networks, nodal change
scores for global efficiency and degree centrality were also
computed. The magnitude of the nodal change score for
global efficiency was higher than any other node in the
network (rank 5 #1, t(16) 5 2.18, P 5 0.04) whereas the nod-
al change score for degree centrality was in the top 5% rel-
ative to all other nodes in the network (rank 5 #4,
t(16) 5 1.88, P 5 0.08).

Low-confidence remembered responses were not includ-
ed in the remembered networks for all analyses up to this
point, because the hippocampus has been shown to be less
sensitive to low-confidence responses [Kim, 2010]. To
ensure that confidence was not confounding our results,
high- and low-confidence networks were constructed from
all retrieval responses, and left-hippocampal graph theory
measures were computed. Global efficiency and degree
centrality for the left hippocampus were not significantly
different between the low- and high-confidence networks
(both P’s> 0.30), as assessed using the permutation proce-
dure developed by Simpson et al. [2013] in conjunction
with the Jaccardized Czekanowski Index, suggesting that
confidence does not drive graph metric differences

TABLE I. Provides a summary of the behavioral results

New Items
[Mean (SD)]

Old Items
[Mean (SD)]

False
Alarm

Correct
Rejection Miss Hit

High Confidence 27% (15) 73% (15) 19% (14) 81% (14)
Low Confidence 30% (10) 70% (10) 57% (13) 43% (13)
All Trials 28% (12) 72% (10) 35% (12) 65% (12)

Only high-confidence hits were included in the remembered net-
work, whereas both high- and low-confidence misses were includ-
ed in the forgotten network. The forgotten and remembered
networks were comprised of a similar number of total trials, on
average (mean remembered 5 54 (SD 5 21, range 5 [25, 94]) trials,
mean forgotten 5 41 (SD 5 15, range 5 [16, 68]). There was not a
significantly different number of total trials (t(16) 5 1.56, P> 0.10)
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obtained for the hippocampus between our networks of
interest.

Successful memory is supported by a hippocampal

retrieval assembly

Our second hypothesis was that successful memory
retrieval would be associated with stronger connectivity
between the hippocampus and a subset of nodes compris-
ing a “retrieval assembly.” To investigate this hypothesis,
we identified a group of regions whose bivariate (i.e.,
direct) functional connectivity with the left hippocampus
increased from forgotten to remembered items (Fig. 3). A
total of 12 brain regions showed an increase (within partic-
ipants) in bivariate connectivity with the left hippocampus
(t-test, P< 0.01, one-sided, unc.) from forgotten to remem-
bered retrieval networks (Table II). No node showed a
decrease in connectivity with the left hippocampus from
forgotten to remembered retrieval networks in accordance
with our set alpha level (t-test, P< 0.01, one-sided, unc.).
The 12 regions identified as members of the assembly
included the bilateral dorsal superior frontal gyrus, left
middle frontal gyrus, left caudate, bilateral supramarginal
gyrus, left precuneus, bilateral postcentral gyrus, right
precentral gyrus, right inferior temporal gyrus, and right
middle occipital gyrus.

Subsequent analyses using the permutation procedure
developed by Simpson et al. [2013] in conjunction with the
Jaccardized Czekanowski Index revealed that, on average,
global efficiency and degree centrality were higher for

nodes in the retrieval assembly for remembered compared
to forgotten networks (global efficiency: P 5 0.03; degree
centrality: P 5 0.03; Fig. 4a). This was the case regardless
of whether or not the left hippocampus was included as
part of the assembly. To ensure that our finding was
unique to nodes in the retrieval assembly, 1,000 random
subsets of 13 network nodes were selected from the
observed networks, and the average global efficiency of
each randomly selected subset of 13 nodes was computed.
The retrieval assembly we identified did in fact exhibit a
greater magnitude change in global efficiency between
remembered and forgotten networks than any other ran-
domly selected subset of 13 network nodes. This same pro-
cedure was implemented for degree centrality, but the
observed change in degree centrality was not among the
largest changes in the network (rank 498 out of 1000).
While there was a significant increase in degree centrality
for the retrieval assembly as a whole between remembered
and forgotten networks, there were also similar magnitude
increases in degree centrality among many other subsets
of nodes in the network. Table III summarizes the global
efficiency and degree centrality values obtained for each
node in the retrieval assembly in both remembered and
forgotten retrieval networks taken separately. Importantly,
while it is possible that the observed increase in global
efficiency or degree centrality for the retrieval assembly
was driven by increased bivariate functional connectivity
to the left hippocampus, such a finding would still under-
score the importance of the left hippocampus in facilitating
integrative processing via the assembly.

Figure 2.

Global efficiency of the left and right hippocampus for remembered and forgotten trials, respec-

tively. The permutation framework developed by Simpson et al. [2013] in conjunction with the

Jaccardized Czekanowski Index revealed that left hippocampal global efficiency was greater in the

remembered than the forgotten condition (P 5 0.02), while the right hippocampus did not reach

significance (P> 0.10).
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Successful retrieval is associated with an increase in

integration across the whole brain

Our third hypothesis was that successful memory
retrieval would be associated with increased integration
(and a less segregated network architecture) across the
entire functional brain network. To investigate this hypoth-
esis, we computed modularity Q values for individual par-
ticipants’ brain networks. Q values represent the extent to
which each network can be partitioned into densely inter-
connected communities of functionally cooperating brain
regions. Although it did not reach the threshold of signifi-
cance, these modularity analyses revealed that the whole-
brain network was somewhat more integrated (i.e., had
smaller Q values) during remembered (Median 5 0.11,
IQR 5 0.05) than forgotten trials (Median 5 0.13,
IQR 5 0.08, P 5 0.07), as assessed using the permutation
procedure developed by Simpson et al. [2013] in conjunc-
tion with the Jaccardized Czekanowski Index (Fig. 5a).
While this difference in modularity did not reach signifi-
cance, a subsequent individual-differences analysis
revealed that the difference in the modularity Q statistic
(remembered network Q minus forgotten network Q) was
significantly and negatively related to memory perfor-
mance assessed with d0 (r(15) 5 20.72, P 5 0.001; Fig. 5b).
Additionally, larger whole-brain modularity Q values in
the forgotten networks were significantly related to better

Figure 3.

Figure 3 provides an overview of the retrieval assembly and

modular nodal assignments. All nodes in the assembly (depicted

as the large nodes in the figure) showed significantly greater

connectivity strength with the left hippocampus for remembered

as compared to forgotten items (significant connections are

depicted as dark lines; see Table II for further details). Signifi-

cant connections within the assembly were determined by set-

ting alpha to 0.01 (t-test, one-tailed, unc.) and removing deviant

connection values (SD> 3.5). Five different functional communi-

ties (i.e., modules) were identified from the modularity analysis:

occipital/temporal (yellow), fronto-parietal (red), parietal (green),

medial temporal (light blue), and subcortical (dark blue). Note

that the nodes comprising the retrieval assembly spanned all

identified modules. [Color figure can be viewed at wileyonlineli-

brary.com]

TABLE II. Changes in hippocampal connectivity with

nodes comprising the retrieval assembly

DL. Hc Connectivity

Mean (SD) P-value

L-CAU 0.14 (0.15) 0.0009
L-MFG 0.14 (0.17) 0.0021
L-SFGdor 0.16 (0.22) 0.0036
R-SFGdor 0.20 (0.21) 0.0007
R-MOG 0.15 (0.20) 0.0027
L-PostCG 0.12 (0.16) 0.0052
R-PostCG 0.12 (0.15) 0.0017
R-PreCG 0.11 (0.14) 0.0024
L-pCUN 0.12 (0.17) 0.0055
L-SMG 0.16 (0.25) 0.0094
R-SMG 0.15 (0.20) 0.0034
L-ITG 0.15 (0.22) 0.0085

Nodes included in the assembly exhibited a significant increase in
connectivity with the left hippocampus from forgotten to remem-
bered retrieval networks (t-test, P< 0.01, one-sided, unc.). [Leg-
end: L-CAU (left caudate), L-MFG (left middle frontal gyrus), L-
SFGdor (left dorsal superior frontal gyrus), R-SFGdor (right dorsal
superior frontal gyrus), R-MOG (right middle occipital gyrus), L-
PostCG (left post-central gyrus), R-PostCG (right post-central
gyrus), R-PreCG (right pre-central gyrus), L-pCUN (left precu-
neus), L-SMG (left supramarginal gyrus), R-SMG (right supramar-
ginal gyrus), L-ITG (left inferior temporal gyrus)].
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Figure 4.

A: Average global efficiency of all nodes in the retrieval assembly

for both remembered and forgotten networks. The permutation

framework developed by Simpson et al. [2013] in conjunction

with the Jaccardized Czekanowski Index revealed that the global

efficiency of the nodes comprising the retrieval assembly of the

remembered network was greater than that of the forgotten

network, regardless of whether or not the left hippocampus was

included in the averaged global efficiency value (all P’s< 0.05).

B: Average PC of all nodes in the retrieval assembly using the

modular partition from the averaged remembered network as a

template. The permutation framework developed by Simpson

et al. [2013] in conjunction with the Jaccardized Czekanowski

Index revealed that the average PC of nodes in the retrieval

assembly in the remembered network was greater than that of

the forgotten network, regardless of whether or not the left

hippocampus is included in the average (all P’s< 0.01).

TABLE III. Global efficiency and degree centrality for all nodes included in the retrieval assembly

Global Efficiency: Median [IQR] Degree Centrality: Median [IQR1

Remembered Forgotten P-value Remembered Forgotten P-value

L-CAU 0.45 [0.38, 0.55] 0.39 [0.31, 0.46] 0.027 37.91 [27.53, 47.90] 31.32 [22.19, 38.33] 0.081
L-MFG 0.48 [0.40, 0.57] 0.45 [0.35, 0.49] 0.053 40.57 [32.06, 50.02] 37.28 [24.00, 42.95] 0.065
L-SFGdor 0.46 [0.44, 0.56] 0.44 [0.38, 0.51] 0.091 39.04 [32.97, 49.18] 36.97 [28.96, 42.52] 0.147
R-SFGdor 0.49 [0.46, 0.56] 0.43 [0.36, 0.52] 0.008 40.57 [38.05, 48.07] 34.63 [26.12, 44.01] 0.018
L-HC 0.44 [0.40, 0.46] 0.38 [0.30, 0.46] 0.021 36.35 [29.74, 40.60] 29.51 [21.37, 34.88] 0.039
R-MOG 0.43 [0.38, 0.61] 0.43 [0.36, 0.50] 0.308 36.20 [27.22, 53.61] 33.13 [25.42, 42.67] 0.524
L-PostCG 0.47 [0.43, 0.58] 0.44 [0.38, 0.53] 0.096 39.40 [33.88, 50.20] 32.32 [27.67, 46.58] 0.053
R-PostCG 0.53 [0.43, 0.57] 0.49 [0.39, 0.51] 0.080 43.39 [33.32, 50.68] 37.59 [27.69, 43.72] 0.139
R-PreCG 0.52 [0.41, 0.56] 0.48 [0.41, 0.52] 0.056 44.49 [33.08, 48.61] 39.06 [29.89, 43.97] 0.036
L-pCUN 0.53 [0.49, 0.63] 0.51 [0.45, 0.58] 0.259 43.83 [42.84, 56.03] 42.81 [35.62, 50.61] 0.09
L-SMG 0.45 [0.41, 0.54] 0.43 [0.35, 0.48] 0.098 36.43 [30.81, 47.20] 33.67 [24.76, 41.62] 0.064
R-SMG 0.46 [0.37, 0.51] 0.43 [0.34, 0.51] 0.352 36.72 [27.60, 45.78] 34.35 [21.04, 43.44] 0.256
L-ITG 0.53 [0.48, 0.60] 0.49 [0.41, 0.56] 0.038 45.91 [41.28, 52.91] 38.37 [32.56, 48.99] 0.024
Assembly 0.46 [0.44, 0.56] 0.44 [0.38, 0.51] 0.030 38.43 [35.55, 47.05] 34.76 [28.11, 42.00] 0.033

Statistical significance for changes in global efficiency and degree centrality between remembered and forgotten retrieval networks was
assessed using nonparametric permutation tests using the framework developed by Simpson et al. [2013] in conjunction with the Jaccar-
dized Czekanowski Index. [Legend: L-CAU (left caudate), L-MFG (left middle frontal gyrus), L-SFGdor (left dorsal superior frontal
gyrus), R-SFGdor (right dorsal superior frontal gyrus), R-MOG (right middle occipital gyrus), L-PostCG (left post-central gyrus), R-
PostCG (right post-central gyrus), R-PreCG (right pre-central gyrus), L-pCUN (left precuneus), L-SMG (left supramarginal gyrus), R-
SMG (right supramarginal gyrus), and L-ITG (left inferior temporal gyrus)].
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memory performance assessed with d0 (r(15) 5 0.54,
P 5 0.03), suggesting that individuals with a more modular
forgotten network have better memory performance. How-
ever, whole-brain modularity Q values in the remembered
networks were not significantly related to memory perfor-
mance (P> 0.10).

To identify the best modular partition to serve as a tem-
plate, the modularity algorithm was run 1,000 times on the
averaged (across participants) remembered network. Of
these 1,000 different runs, 90.3% had 5 modules and the
remaining 9.7% had 4 modules. The JI revealed that the 5
module networks were more consistent between iterations
(in terms of the subsets of nodes comprising the different
partitions) than the 4 module networks (5 Module Net-
work M 5 0.87 (SD 5 0.12); 4 Module Network M 5 0.82
(SD 5 0.13); t(9310) 5 20.1; P< 0.0001). The maximum Q
values were nearly identical between the 5 module and 4
module networks (5 Module Max Q 5 0.0623; 4 Module
Max Q 5 0.0624). Given that the Q values were nearly
identical between 4 module and 5 module partitions, that
the 5 module partition was identified more often than the
4 module partition, and that the 5 module networks were
more consistently partitioned than the 4 module networks,
the particular 5 module network with the highest Q value
was used as the template partition for the averaged
remembered network. While the averaged remembered
network had a relatively low modularity Q, a series of ran-
dom network rewirings [Rubinov and Sporns, 2010]
revealed that modularity Q values in the observed net-
works were significantly greater than all Q values obtained
from the corresponding randomized networks with equal
density and degree distribution (1,000 permutations, range
of Q values 5 [0.008, 0.0137]).

Interestingly, nodes comprising the retrieval assembly
were distributed across all identified modules in the net-
work (Fig. 3). This suggests that the hippocampus better
facilitates information transfer across multiple network
modules to support the successful retrieval of words.
While this observation is largely qualitative in nature, it is
consistent with the notion that the role of the hippocam-
pus in episodic memory retrieval is to facilitate informa-
tion integration between diverse brain regions and to
enhance the convergence and joint processing of informa-
tion across different components of the network, each of
which is presumably contributing particular functions that
facilitate memory retrieval.

Using the modular partition identified from the aver-
aged (across participants) remembered retrieval network
as a fixed template, we computed the PC of the nodes in
the retrieval assembly for each of the individual partici-
pant’s remembered and forgotten retrieval networks,
respectively. While all nodes in the retrieval assembly had
high PC in both remembered and forgotten retrieval net-
works, the permutation procedure revealed that the aver-
age PC of the assembly was higher in the remembered
than the forgotten condition (P 5 0.008; Fig. 4b). This was
the case regardless of whether or not the left hippocampus
was removed from the retrieval assembly. While one
might argue that this result simply arises from the fact
that the modules were defined using the averaged remem-
bered network as a template, this seems unlikely because
the modularity algorithm is designed to minimize the con-
nectivity between different modules; thus, one would
expect that a node’s between module connectivity
(indexed using the PC) would be lower in the network
wherein the modular template was defined. A summary of

Figure 5.

Provides a summary of the modularity findings. A: The permuta-

tion procedure developed by Simpson et al. [2013] in conjunc-

tion with the Jaccardized Czekanowski Index revealed that

modularity Q values were somewhat greater for the forgotten

network than for the remembered network (P< 0.10), but this

did not reach significance in accordance with our set alpha level.

B: The change in modularity between the remembered and for-

gotten networks was strongly correlated with individual variabili-

ty in memory performance assessed with d0 (r(15) 5 20.72,

P 5 0.001). C: The relationship between the change in modulari-

ty (Q) and change in the retrieval assembly’s PC for the remem-

bered minus forgotten condition (r(15) 5 20.86, P< 0.05).
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differences in PC for nodes within the retrieval assembly
between remembered and forgotten networks is presented
in Table IV.

Having found, for remembered as compared with for-
gotten items, that the modularity of the network decreased
and that the retrieval assembly, which spanned all mod-
ules, exhibited a larger PC as a whole, we then hypothe-
sized that these increased PC values for nodes in the
retrieval assembly would be related to a decrease in mod-
ularity Q across the entire network. Accordingly, the
retrieval assembly’s change in PC was compared to the
change in the network modularity (Q) at the individual
participant level. These measures were found to be closely
related (r(15) 5 20.86, P< 0.001; Fig. 5c). Follow-up analy-
ses were run to determine if this significant correlation
was unique to the nodes comprising the retrieval assem-
bly. 50,000 random subsets of 13 nodes were selected from
the full network, and the change between remembered
and forgotten retrieval networks in the averaged PC of
each set of 13 nodes was compared to the change between
remembered and forgotten retrieval networks in the mod-
ularity of the entire network. Thus, we obtained 50,000
correlation coefficient values, one for each subset of 13
nodes randomly selected. The observed retrieval assembly
PC difference was among the most closely related to the
change in modularity (top 5%).

Univariate results

All univariate analyses were conducted using single-
trial beta values. Univariate results estimated from the
single-trial analyses were assessed for ROIs, as defined by
the AAL atlas, and the univariate results were compared
to graph theoretical results. This was done to ensure that
graph theoretical results were not the product of differ-
ences in univariate activation. Within the retrieval assem-
bly, no node exhibited a significant difference in
univariate activation even before correction for multiple
comparisons (Remembered minus Forgotten; P> 0.10).
Additionally, none of the changes in graph theoretic mea-
sures were significantly correlated with changes in univar-
iate activation even before correction for multiple
comparisons (P> 0.10). Taken together, these results sug-
gest that the graph metrics captured unique features of the
data above and beyond what can be gleaned from examin-
ing univariate activity.

DISCUSSION

The purpose of this study was to investigate functional
brain network architecture underlying episodic memory
retrieval using graph theory measures at nodal, assembly,
and whole-brain topological levels. This study yielded
three main findings. First, the hippocampus displayed an
increase in global efficiency and degree centrality for
remembered compared to forgotten items, and it signifi-
cantly reorganized its set of direct connections (FSR)
between remembered and forgotten retrieval networks.
Second, for remembered compared to forgotten trials, the
hippocampus was more strongly connected with several
network nodes comprising a retrieval assembly. This
retrieval assembly included many regions previously
linked to retrieval success, such as the PFC and ventral
parietal regions. Collectively, the retrieval assembly exhib-
ited greater integration with rest of the functional brain
network for remembered compared with forgotten trials.
Third, at the level of the whole brain, modularity analyses
revealed that the entire network exhibited a less segregat-
ed modular organization for remembered compared to for-
gotten items, suggesting that integrative processing
throughout the entire functional network supports the suc-
cessful remembering of words. These three findings are
discussed in separate sections below.

Hippocampal Integration: Increased Global

Efficiency and Degree Centrality for

Remembered Compared with Forgotten Items

Our results support our first hypothesis that the hippo-
campus would have a greater capacity for efficient integra-
tive processing during remembered compared to forgotten
conditions. The left lateralization of this effect builds upon
results from previous univariate analyses showing that the

TABLE IV. PCs for all nodes included in the retrieval

assembly

PC: Median [IQR]

Remembered Forgotten P-value

L-CAU 0.786 [0.774, 0.789] 0.774 [0.762, 0.786] 0.047
L-MFG 0.759 [0.730, 0.765] 0.748 [0.669, 0.750] 0.001
L-SFGdor 0.767 [0.748, 0.771] 0.755 [0.739, 0.766] 0.074
R-SFGdor 0.767 [0.760, 0.777] 0.757 [0.744, 0.767] 0.035
L-HC 0.779 [0.767, 0.784] 0.771 [0.759, 0.783] 0.234
R-MOG 0.777 [0.764, 0.781] 0.776 [0.752, 0.778] 0.696
L-PostCG 0.781 [0.779, 0.785] 0.779 [0.757, 0.783] 0.006
R-PostCG 0.778 [0.776, 0.781] 0.776 [0.764, 0.778] 0.091
R-PreCG 0.780 [0.779, 0.783] 0.778 [0.766, 0.782] 0.057
L-pCUN 0.773 [0.767, 0.780] 0.773 [0.762, 0.777] 0.369
L-SMG 0.782 [0.774, 0.784] 0.774 [0.749, 0.781] 0.044
R-SMG 0.781 [0.769, 0.785] 0.771 [0.758, 0.778] 0.232
L-ITG 0.778 [0.769, 0.783] 0.773 [0.764, 0.777] 0.335
Assembly 0.772 [0.767, 0.779] 0.765 [0.747, 0.772] 0.008

Statistical significance for changes in PCs between remembered
and forgotten retrieval networks was assessed using non-
parametric permutation tests using the framework developed by
Simpson et al. [2013] in conjunction with the Jaccardized Czeka-
nowski Index. [Legend: L-CAU (left caudate), L-MFG (left middle
frontal gyrus), L-SFGdor (left dorsal superior frontal gyrus), R-
SFGdor (right dorsal superior frontal gyrus), R-MOG (right mid-
dle occipital gyrus), L-PostCG (left post-central gyrus), R-PostCG
(right post-central gyrus), R-PreCG (right pre-central gyrus), L-
pCUN (left precuneus), L-SMG (left supramarginal gyrus), R-SMG
(right supramarginal gyrus), L-ITG (left inferior temporal gyrus)].
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left hippocampus tends to be more sensitive to the retriev-
al of verbal stimuli while the right hippocampus is more
sensitive to pictorial stimuli [Papanicolaou et al., 2002].
Our findings also complement recent multivariate func-
tional connectivity results [Geib et al., 2015] showing that
the right hippocampus exhibits a greater capacity for effi-
cient information integration throughout the network for
the vivid retrieval of scenes as compared to the dim
retrieval of scenes.

The importance of segregated functioning during
cognitive tasks has been extensively investigated using
univariate activation methodologies. However, localized
functional specialization alone cannot fully account for
most aspects of brain function [Sporns, 2013]. Integrated
and distributed processes that subserve cognition may
instead benefit from a higher capacity for efficient informa-
tion transfer across the brain as a whole, especially for
more complex cognitive tasks [Sporns, 2013; Stanley et al.,
2015; van den Heuvel et al., 2009]. Geib et al. [2015] dem-
onstrated that the right hippocampus exhibits a greater
capacity for global information integration to support the
retrieval of scenes from memory. Similarly, our results
here show that the left hippocampus exhibits a greater
capacity for effective information integration to support
the retrieval of individual words from memory. To further
clarify why the hippocampus exhibits changes in global
efficiency and degree centrality when items are remem-
bered as opposed to forgotten, we computed FSR, which is
a recently developed measure for investigating the extent
to which an observed change in nodal graph theory mea-
sures might be dependent upon a reorganization of direct
functional connections in the network [Geib et al., 2015].
There was a significant difference in FSR for the left hip-
pocampus, indicating that successful memory retrieval
involves a substantial reorganization of direct functional
connections of the left hippocampus. This suggests that
hippocampal changes in global efficiency and degree cen-
trality are at least partly driven by the hippocampus reor-
ganizing its set of direct functional connections. Finally,
nodal change scores for global efficiency (rank 5 #1,
P< 0.05) indicate that the left hippocampus increased its
global efficiency more than any other node in the network
from forgotten to remembered conditions. While nodal
change scores for degree centrality were only trending
toward significance (rank 5 #4, P< 0.10), they also empha-
size that the left hippocampus increases in centrality from
forgotten to remembered networks to a greater extent than
the vast majority of other network nodes.

Univariate activation changes were uncorrelated with
changes in graph theory metrics for all nodes of interest.
However, changes in degree centrality and changes in
global efficiency between remembered and forgotten net-
works were found to be positively correlated across nodes
in each individual participant’s network (smallest magni-
tude r(88) 5 0.71, P< 0.001). While these two measures do
capture different topological properties of complex

networks, it is clear that they are explaining much of the
same variance. Future studies will investigate when and
why these measures diverge in functional and structural
brain networks.

Assembly Organization: Successful Memory Is

Supported by Increased Hippocampal

Connectivity with a Retrieval Assembly

A retrieval assembly centered on the left hippocampus,
which consisted of nodes with stronger connections to the
left hippocampus for remembered compared with forgot-
ten conditions, contained many brain regions previously
shown to be involved in memory retrieval operations
using different methodologies, such as the PFC [Lund-
strom et al., 2005; Wagner et al., 2005] and VPC [Cabeza
et al., 2008; Ciaramelli et al., 2008; Vilberg and Rugg,
2008]. Additionally, the nodes identified as comprising the
retrieval assembly were located in spatially disparate
regions of the brain, complementing prior work showing
that long-distance connections may be particularly impor-
tant for facilitating healthy cognitive functioning across
diverse tasks [Cohen et al., 2014; Liu et al., 2013; Schedlba-
uer et al., 2014; Wang et al., 2010].

The importance of the PFC for episodic memory retriev-
al has been well-established using diverse methodologies.
PFC damage is associated with impaired episodic memory
[Davidson et al., 2006], and PFC activations are frequently
observed during episodic retrieval and have been attribut-
ed to memory search and monitoring processes [Mitchell
and Johnson, 2009; Reas and Brewer, 2013; Rugg and Vil-
berg, 2013; Wagner et al., 2005]. In this study, exploratory
analyses revealed that the bilateral superior frontal gyri
showed increased bivariate functional connectivity and
increased global efficiency for remembered compared with
forgotten conditions. These increases in connectivity are
potentially due to the recruitment of these regions for
memory search and monitoring to successfully retrieve
items from memory.

Like the PFC, the VPC is commonly activated during
episodic memory retrieval. The attention to memory model
proposes that during episodic retrieval the DPC contrib-
utes to operations dependent on top-down attention, such
as monitoring, whereas VPC contributes to operations
dependent on bottom-up attention, such as recollection.
Because we focused on high-confidence hits (vs. misses),
the network we investigated is primarily associated with
recollection rather than with monitoring. Monitoring-
related activity can be identified by comparing difficult vs.
easier retrieval conditions, such as familiarity vs. recollec-
tion or low- vs. high-confidence trials [Cabeza et al., 2008],
which we did not investigate in the present study. Accord-
ing to another view, VPC activations reflect the mainte-
nance of recovered multimodal information within
working memory [Vilberg and Rugg, 2008]. The observed
increase in this study in functional connectivity between

r Geib et al. r

r 2254 r



the hippocampus and the VPC for high-confidence hits is
consistent with both views. However, further studies
directly manipulating the capture of bottom up attention
and maintenance of multi-modal information are needed
to further elucidate the role of the VPC in the large-scale
retrieval network.

There is existing evidence from different methodologies
suggesting that the caudate is involved in declarative
memory retrieval processes [Scimeca and Badre, 2012].
Hart et al. [2013] have suggested that semantic memory
retrieval is dependent upon a pre-SMA, caudate, thalamus
circuit. Additionally, this circuit has been shown to be
active in tasks involving episodic memory retrieval in both
fMRI [Bastin et al., 2012] and PET [Wiggs et al., 1999]
studies, and a circuit that just includes the thalamus and
caudate has been shown to play a role in the retrieval of
autobiographical memories [Burianova and Grady, 2007].
Damage to the caudate has also been associated with
poorer declarative memory for verbal information [Mizuta
and Motomura, 2006]. Finally, it is also possible that our
results regarding the caudate are more closely associated
with goal attainment during the retrieval process [Han
et al., 2010].

Our exploratory findings suggest that the caudate may
play an additional role in episodic memory retrieval by
also serving a critical integrative function within the net-
work, as evidenced by increased global efficiency, and a
higher PC for remembered compared with forgotten con-
ditions. These results indicate that the caudate has a great-
er capacity for efficient information transfer throughout
the network when successfully retrieving memories. Addi-
tionally, given the known anatomical connections between
the hippocampus and caudate [Robinson et al., 2012] and
between the caudate and frontal cortex [Leh�ericy et al.,
2004], the caudate might serve as an intermediary node
between the hippocampus and prefrontal nodes involved
in retrieval control processes.

Assembly Integration: Global Efficiency Increases

and PC Increases for Remembered Compared

with Forgotten Items

For the subset of nodes comprising the retrieval assem-
bly, global efficiency, and degree centrality were higher,
on average, for remembered than for forgotten items. This
suggests that increased integration within the assembly
contributes to memory success. While previous studies
have reported that average whole brain global efficiency is
higher during the retrieval of vivid compared to dim
memories of scenes [Geib et al., 2015], here we narrowed
our analyses to a level of organization between the nodal
and whole-brain levels to show that the integrative proper-
ties of the retrieval assembly also increase from forgotten
to remembered conditions. In the case of global efficiency,
this increase was greater in magnitude than any other ran-
domly selected subset of nodes.

Furthermore, we found that the average PC of nodes in
the retrieval assembly was greater for the remembered
than for the forgotten trials. This finding suggests that the
nodes in the assembly are increasing their extramodular
functional connections. This kind of change in functional
network architecture between remembered and forgotten
conditions presumably facilitates integrative processing
across many different functional communities in the net-
work. Taken in conjunction with the hippocampal FSR
result, this suggests that the overall hippocampal increases
in integration may be driven by changes both in direct
functional connections (e.g., FSR) and in indirect functional
connections via the connections of nodes in the retrieval
assembly.

Whole Brain Integration: Decreased

Modularity for Remembered Compared

with Forgotten Items

Modularity algorithms take into account the relative bal-
ance between integrative and segregated topological fea-
tures within a network [Blondel et al., 2008; Newman,
2006]. While the retrieval assembly results show that
increased integrative processing among a small subset of
nodes in the network was important for successful memo-
ry retrieval, modularity algorithms provide a statistic
describing the extent to which the entire network exhibits
a more integrative or segregated functional architecture.
Our results demonstrate that whole-brain modularity
decreased from forgotten to remembered retrieval net-
works, suggesting that successfully remembering items
was associated with a relatively more integrated than seg-
regated functional network architecture. Additionally, the
differences in modularity Q scores (remembered network
Q minus forgotten network Q) across individuals were
inversely correlated with their memory performance. This
corroborates and extends findings from previous work
showing that better cognitive performance, especially for
more complex tasks, is associated with a more globally
integrated network architecture in diverse cognitive
domains, including: working memory [Stanley et al., 2014;
Stevens et al., 2012], odor recognition memory [Meunier
et al., 2014], episodic memory for visual scenes [Geib
et al., 2015; Westphal et al., 2014], and cognitive control
[Braun et al., 2015]. We additionally report that increased
modularity in the forgotten network is related to memory
strength (d0). One potential (but speculative) explanation
for this result is that better performers on the task fail to
remember items only for trials in which the network is
highly segregated (i.e., not well integrated).

Furthermore, we found that the nodes identified as com-
prising the hippocampal retrieval assembly span multiple,
different modules. This suggests that the hippocampus
might be responsible for coordinating large-scale network
interactions between differentially specialized and distrib-
uted subsystems. In fact, rapidly accumulating evidence
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has shown that the hippocampus coordinates with a
diverse set of brain regions that support complex represen-
tations, including: encoding retrieval similarity in the occi-
pitotemporal cortex [Wing et al., 2015], predictive coding in
the extrastriate cortex [Hindy et al., 2016], temporal sequen-
ces in the lateral PFC and medial PFC [Schapiro et al.,
2016], and attentional orientation in the retrosplenial cortex
[Aly and Turk-Browne, 2015]. Our results suggest that the
hippocampus alters its connectivity profile from forgotten
to remembered retrieval conditions to better interconnect
nodes in different modules. In this way, the hippocampus
appears to facilitate the communication and the distribu-
tion of information between modules when items are suc-
cessfully remembered as opposed to forgotten.

Post-hoc analyses also revealed that nodes within the
retrieval assembly exhibited increased PCs in accordance
with an observed decrease in modularity (Q) for remem-
bered compared with forgotten items. This suggests that
the observed decrease in modularity Q for the entire net-
work is closely related to the fact that nodes within the
retrieval assembly increase their relative between module
connectivity. Previous work [Geib et al., 2015] has provided
evidence that both the hippocampus and entire brain
become more integrated during successful memory retriev-
al. However, this work did not link these phenomena at a
more intermediate level of network analysis. Here, we sug-
gest that the retrieval assembly serves as the explanatory
link between these phenomena. The retrieval assembly
shows increased integrative processing during successful
memory retrieval and facilitates between module commu-
nication across the network. Moreover, the extent to which
the retrieval assembly increases its relative between mod-
ule communication is closely related to the change in
whole-brain integrative processing. We are not suggesting
that all nodes in the network become more integrated (e.g.,
olfactory and auditory cortices should not become more
integrated as a function of memory performance), but only
that the network as a whole becomes more integrated.

Investigating the properties of retrieval assemblies pro-
vides a viable avenue for conducting future research on the
neural instantiation of memory processes. Future work will
investigate which components of the retrieval assembly are
common across different kinds of retrieval tasks, which
kinds of information are being shared between modules,
and the temporal sequence of topological changes (e.g., does
the retrieval assembly or hippocampus increase its efficien-
cy first?). It is through the discovery of this intermediate lev-
el of organization that we can fully parse out how network
interactions influence memory retrieval.

CONCLUSIONS

Recently, there has been growing interest in identifying
network nodes that facilitate the integration of information
between segregated, specialized communities of brain
regions in order to support more complex cognitive

processes [Bertolero et al., 2015; Fornito et al., 2015; Stanley
et al., 2014]. Network nodes that interconnect many differ-
ent network modules play a key role in subserving more
complex cognitive tasks by allowing groups of nodes to
perform specific, specialized functions yet still effectively
interact with other brain regions performing other kinds of
functions. Here, we incorporated a novel analysis method
to show how a critical network node can change between
two conditions of interest to better facilitate the integration
of information between modules. Using this approach, we
showed that the hippocampus occupies a more topologi-
cally critical position in the network to facilitate the flow
of information between network modules for successful
compared to unsuccessful memory retrieval. To facilitate
the successful retrieval of items from memory, the hippo-
campus became more strongly connected with sensory
motor regions, attention regions, frontal control regions,
higher order visual regions, subcortical regions, and other
default mode regions such as the precuneus. In general, to
support successful episodic memory retrieval of semantic
information, the hippocampus is likely to be strongly con-
nected with prefrontal regions that mediate retrieval con-
trol process [Rugg and Vilburg, 2013; Wagner et al., 2005],
ventral parietal regions serving attention functions [Cabeza
et al., 2008], higher-order visual regions supporting senso-
ry reactivation [Danker and Anderson, 2010], and the pre-
cuneus supporting internal mentation [Kim, 2016]. It is
through the complex but coordinated interactions involv-
ing these regions that we are able to retrieve information
from memory. Although our sample size is relatively
small, our results are highly consistent with and comple-
mentary to this prior literature investigating the neural
bases of memory using diverse methods.

Taken together, these findings suggest that memory
retrieval is dependent upon a broadly distributed, yet
interconnected, set of brain regions, as opposed to activa-
tions in single regions or activations across a set of regions
that can be identified using univariate activation analyses.
Notably, evidence was presented for increased integrative
processing at the hippocampal, retrieval assembly, and
whole-brain topological levels to support the successful
remembering of words. While we maintain that the hippo-
campus is a critical structure for memory retrieval, the
functionality of the hippocampus itself is only partly
responsible for our ability to successfully retrieve items
from memory. Identifying the ways in which the hippo-
campus is directly and indirectly functionally interacting
with other brain regions to facilitate episodic memory
retrieval provides a more complete account of the neural
processes underlying this critical cognitive function.
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