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Abstract

Efficiently avoiding inappropriate actions in a changing environment is central to cognitive control. One mechanism contributing to
this ability is the deliberate slowing down of responses in contexts where full response cancellation might occasionally be
required, referred to as proactive response inhibition. The present electroencephalographic (EEG) study investigated the role of
attentional processes in proactive response inhibition in humans. To this end, we compared data from a standard stop-signal task,
in which stop signals required response cancellation (‘stop-relevant’), to data where possible stop signals were task-irrelevant
(‘stop-irrelevant’). Behavioral data clearly indicated the presence of proactive slowing in the standard stop-signal task. A novel
single-trial analysis was used to directly model the relationship between response time and the EEG data of the go-trials in both
contexts within a multilevel linear models framework. We found a relationship between response time and amplitude of the atten-
tion-related N1 component in stop-relevant blocks, a characteristic that was fully absent in stop-irrelevant blocks. Specifically, N1
amplitudes were lower the slower the response time, suggesting that attentional resources were being strategically down-regu-
lated to control response speed. Drift diffusion modeling of the behavioral data indicated that multiple parameters differed across
the two contexts, likely suggesting the contribution from independent brain mechanisms to proactive slowing. Hence, the atten-
tional mechanism of proactive response control we report here might coexist with known mechanisms that are more directly tied
to motoric response inhibition. As such, our study opens up new research avenues also concerning clinical conditions that feature

deficits in proactive response inhibition.

Introduction

Adaptive motor behavior requires a complex coordination of motor
activation and inhibition. Inhibitory mechanisms play a fundamental
role in everyday behavior, in cognitive development, and in a range
of neurological and psychiatric conditions, including attention-deficit
hyperactivity disorder (ADHD), Parkinson’s disease and substance
abuse (Chambers et al., 2009). In a laboratory setting, the stop-sig-
nal paradigm has often been used to quantify the latency and effi-
ciency of response inhibition (Logan & Cowan, 1984), and to
investigate its underlying neural processes (Aron, 2011; Huster
et al., 2013).

In the stop-signal task, a go-stimulus requiring a rapid choice-
reaction is infrequently followed by a stop-stimulus, signaling the
participant to halt the initiated response. Task behavior can be char-
acterized as a race between a process that triggers (go-process) and
cancels (stop-process) a motor action. The stop-process latency
(‘stop-signal response time’; SSRT) is covert, but can be recovered
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by assuming a stochastic model, such as the Independent Race
Model (Verbruggen & Logan, 2009b).

Traditionally, the research focus was on processes related to this
reactive form of inhibition (triggered by the stop-stimulus), which
has been found to be related to a ‘response-inhibition network’
involving the right inferior frontal gyrus, the pre-supplementary
motor area and the subthalamic nucleus (Aron et al., 2014; see also
Cai et al., 2014). Recently, however, proactive response inhibition
has received increasing attention. Proactive response inhibition is
considered potentially more ecologically relevant, in that it describes
the tendency of slowing down responses when outright stopping
might be required, which likely relates to response caution in every-
day situations (Aron, 2011). Mathematical modeling has mostly
related this effect to an increased decision threshold of the go-pro-
cess (e.g., Verbruggen & Logan, 2009a), and a range of experimen-
tal studies have implicated the (reactive) response-inhibition network
in this process as implementing gradated instead of complete
response inhibition (Aron et al., 2014).

Although the core neural processes of reactive and probably also
proactive inhibition likely reside within the response-inhibition and
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extended motor network, recent behavioral research and theorizing
has highlighted a possible role of earlier sensory/attentional pro-
cesses in response inhibition (Bari & Robbins, 2013; Huster ef al.,
2014; Logan et al., 2014; Verbruggen et al., 2014b). Consistent
with such notions, differences in the attentional processing of stop-
stimuli have been found to contribute to the behavioral outcome in
the stop-signal task, with increased attention to the stop-stimulus
being associated with successful response inhibition (Bekker ez al.,
2005; Boehler et al., 2009; Kenemans, 2015).

Yet, some recent findings suggest that attentional processes may
also play a role in proactive response inhibition; specifically, we
have reported magnetoencephalograpic data showing that the atten-
tional processing of the go-stimulus in a stop-trial is enhanced when
response inhibition is ultimately unsuccessful (Boehler et al., 2009;
see also Knyazev et al., 2008). While this implies that varying
attentional processing of the go-stimulus is behaviorally relevant,
this earlier work was limited in important ways with respect to the
study of proactive response inhibition. Specifically, it involved only
a small subset of trials (i.e., stop-trials), which furthermore could
theoretically have been affected by the overlapping processing of
Stop-stimuli in trials where those were presented particularly rapidly
after the onset of the Go-stimulus. In addition, it was not clear
whether participants actively engaged differential attentional process-
ing as a means of strategic proactive inhibition. Rather, this earlier
work might have identified the influence of randomly oscillating
variations in attentional focus toward the go-stimuli, and not strate-
gically deployed levels of attention driven by task-relevant stimuli.
Here, we address these questions by (i) using EEG measures for
which we adopt a single-trial framework to model electroencephalo-
graphic activity during go-trials as a function of response slowing
(Pernet et al., 2011) and (ii) by including additional task blocks in
which stop-stimuli were task-irrelevant to provide a baseline condi-
tion which should be devoid of proactive response inhibition.

Methods
Participants

Sixteen healthy right-handed subjects (mean age 24.7 years, SD 5.0,
eight males) took part in the study. Subjects gave written informed
consent before the experiment in accordance with the Duke Medical
Center Institutional Review Board for Human Subjects. The experi-
ments were performed at Duke University. All subjects were neuro-
logically intact and had normal or corrected-to-normal visual acuity.

Stimuli

On each trial a traffic light symbol was presented above a central fix-
ation dot on a gray background. The traffic symbols were green go-
signs, directed to either the LEFT or the RIGHT, and red stop-signs.
The LEFT-pointing go-sign required a button press with the right
index finger, and the RIGHT-pointing one required a button press
with the right middle finger. In contrast to our earlier related work
(e.g., Boehler er al., 2009) the target stimuli were presented in isola-
tion without additional distractor items. This choice-reaction stimulus
either lasted for the full stimulus duration (go-trial) or was rapidly
followed by a stop stimulus (stop-trial). Two block types were used:
stop-relevant and stop-irrelevant (see Schmajuk er al., 2006 and
Boehler ef al., 2010; for similar task designs that used stop-irrelevant
stop-trials as a sensory baseline condition to investigate reactive
response inhibition). In stop-relevant blocks subjects were instructed
to withhold their response when a stop-stimulus was encountered,

whereas in stop-irrelevant blocks subjects were instructed to ignore
the stop-stimulus completely and to always respond LEFT or RIGHT
to the go-stimulus, see Fig. 1. Participants were told not to slow
down their response strategically. Still, proactive slowing is typically
observed in such settings (Verbruggen ez al., 2005).

Procedure

Go-trials accounted for 75% of all trials, and stop-trials for the
remaining 25%. There were twelve experimental blocks each con-
sisting of approximately 90 trials. At the midpoint there was a small
break and instructions were changed (e.g., stop-relevant to stop-irre-
levant), with the next run having the opposite sequence. In total,
there were 285 stop-trials and 846 go-trials, equally distributed
across the stop-relevant and stop-irrelevant task blocks. Given the
fast ABBA sequence of different block types, the actual block order
was not further counterbalanced across participants. The overall
duration of stimulus presentation was 700 ms for each trial, and tri-
als were interleaved by intertrial intervals that varied randomly
between 1000 and 1400 ms. For go-trials in both stop-relevant and
stop-irrelevant blocks the visual display was constant for the 700 ms
duration, whereas for stop-trials the go-stimulus was replaced by a
stop-sign after a certain stop-signal delay (SSD), which would then
stay on screen until the end of the 700 ms duration. For relevant
stop trials an adaptive staircase procedure was used to control stop-
ping performance by incrementing (after a successful stop trial) or
decrementing (after an unsuccessful stop trial) the stop-signal delay
by 17 ms. This procedure enabled the reliable calculation of the
stop-signal response time (SSRT), which reflects the time required
to inhibit a motor response. As a matched routine, we took the end
value of the adapted stop-signal delay from stop-relevant blocks as
the initial value in subsequent stop-irrelevant blocks and then ran-
domly alternated it by 17 ms on each subsequent irrelevant trial.
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Fi1G. 1. Paradigm. Participants performed a standard (stop-relevant) stop-sig-
nal task (a) and a stop-irrelevant version (b) in separate blocks. Response
inhibition was required upon presentation of a stop-stimulus in the stop-rele-
vant but not the stop-irrelevant blocks.
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Recording and analysis
Basic behavioral analyses

All response time analyses were performed using repeated-measures
analysis of variance (ranova). Differences in accuracy for go-trials
were tested between blocks using a non-parametric %> test of differ-
ences in proportions. Testing the assumptions of the independent race
model, and hence the prerequisites for reliably estimating the SSRT,
we found that (1) the SSD was longer during unsuccessful than suc-
cessful Stop-trials, ¢ (15) = 7.65, P < 0.001; (2) that go-trial RT was
slower than RTs on unsuccessful Stop-trials, #(15) = 8.94, P < 0.001,
and (3) that RTs on unsuccessful stop trials increase as a function of
SSD (r = 0.34, ¢ (779) < 0.001). To estimate the SSRT the integration
approach was used. This approach defines the SSRT = (nth rank-
ordered RT) — (mean stop-signal delay), with n equal to the number
of RTs in the go-trial RT distribution multiplied by the overall proba-
bility of responding given a stop signal. Simulations showed that
under most circumstances the integration approach yields consistent
and unbiased estimates of the SSRT (Verbruggen et al., 2013). Note,
however, that stop-trial data were only of peripheral interest here, as
the main analyses focus on the go-trials from the two different task
blocks.

Drift diffusion models

Drift diffusion models are a description of a binary choice process
defined by three main parameters (Ratcliff, 1978), and have been
used frequently in the study of proactive inhibition (e.g., Ver-
bruggen & Logan, 2009a). These parameters are the response
threshold (@), the mean rate of approach to a threshold, known as
drift rate (v), and processes that precede and succeed the actual deci-
sion process and give rise to a non-decision time (#0). Hierarchical
Bayesian estimation was used to model the parameters using the
HIERARCHICAL DRIFT DIFFUSION MODEL (HDDM) software (Wiecki
et al., 2013). Model fit was assessed using the deviance information
criterion (Spiegelhalter ez al., 2002; DIC, with smaller DIC indicat-
ing better fit). Five nested candidate models were fit to the data; a
null model (model 0), a full model (model 1, including a, v and ?0)
and three reduced models; a model without 0 (model 2), a model
without v and 70 (model 3) and a model without a and 70 (model 4).
These models were chosen to test for differences in the parameters
in a principled sequential manner, and for alignment with previous
modeling efforts (Verbruggen & Logan, 2009a). 20 000 posterior
samples were drawn for each model using Markov-Chain Monte
Carlo methods. We used a burn-in of 5000 and a thinning factor of
3. Each model was checked for convergence using the Gelman—
Rubin diagnostic (Gelman & Rubin, 1996). Furthermore, posterior
predictive checks were made as an added assurance of proper fit.
After model selection, posterior distributions were probed to deter-
mine differences directly in the parameters between the stop-relevant
and stop-irrelevant task contexts. This is accomplished by examining
the proportion of posterior samples falling above or below the two
estimated posterior distributions of any specific parameter, resulting
in a probability that one posterior distribution is greater or less than
the other (see Kruschke, 2010 for an overview of Bayesian
methodology).

EEG recording

EEG was recorded from 64 eclectrodes mounted in a custom-
designed electrocap (Electro-Cap International, Eaton, OH, USA),
referenced to the right mastoid during recording (SynAmps
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amplifiers from Neuroscan; El Paso, TX, USA). In addition, hori-
zontal and vertical EOG electrodes recorded blinks and eye move-
ments, for which participants were additionally monitored online via
a video camera in the EEG chamber. Electrode impedances were
kept below 2Q for the mastoids, below 10Q for the electro-oculo-
gram (EOG) electrodes and below 5Q for all the remaining elec-
trodes. All EEG channels were continuously recorded with a band-
pass filter of 0.01-100 Hz at a sampling rate of 500 Hz per channel.

EEG preprocessing

EEG data were algebraically re-referenced to the average-mastoid
offline. A coarse (visual) inspection was performed on the continu-
ous data of each subject to exclude stretches of data with common
EEG artifacts. This was followed by an Ocular-correction ICA anal-
ysis using the vertical EOG as the blink marker channel in Brain
Vision Analyzer 2 (Brain Vision analyzer software; Brain Products
GmbH, Munich, Germany). The correct responses of the go-trials
from the two task blocks were then epoched from —200 to 1200 ms
and corrected using the pre-stimulus baseline prior to further analy-
sis. In the end, 97.8% of the data epochs were preserved.

Go-locked event-related potential (ERP) analyses

To focus on the inferoposterior visual N1 component, an averaged
topography was plotted across both block types and used to define
10 posterior electrodes, five on the right and five on the left, as well
as the time-range of interest, determined as 130-190 ms, to repre-
sent the visual N1 elicited by the Go-signal. This time-range and set
of electrode averages was then also used for the statistical analysis
(see e.g., Vogel & Luck, 2000, for similar a similar choice of chan-
nels and time-range). It is important to note, however, that the ERP
analysis here is of peripheral interest, given that the between-block
comparison is rather unspecific.

Single-trial ERP data

The main analysis of interest investigated the relationship between
single-trial ERP data and response speed on go-trials in the two dif-
ferent task blocks. To this end, single-trial ERP analysis was carried
out using the software package LMo EEG (Pernet er al., 2011; also
see Gaspar et al., 2011). Single-trial analysis fits a general linear
model of the form [y., = XB. + noise] to trials of EEG data (y),
for all analyzed electrodes (e) and sampling points (s) in the N1
time window. The five predictors in the design matrix X were the
categorical stop-relevant and stop-irrelevant go-trial types, the sin-
gle-trial normalized (per subject, per condition) response times and a
noise variable. Below, we describe some more details of the statisti-
cal analysis, as implemented in LiMO EEG (see Pernet et al., 2011 for
more details).

A generalized Moore-Penrose pseudo-inverse algorithm was used
to estimate the beta parameters for each subject. Model fit was
assessed per individual by examining R’ the amount of variance
explained in the EEG by the design matrix. These coefficients were
tested using a restricted intercept-only model to develop an F-test that
determines the amount of variance being explained over this restricted
model with the full model. This results in F-values for each sampling
point and electrode considered in the model, with degrees of freedom
dependent on total number of predictors in the restricted model (i.e.,
number of predictors in the full model — 1) and trial number.

At the second level of the analysis each of the subjects’ five esti-
mated beta coefficients were ‘synthesized’ to probe for statistical
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significance using nonparametric (bootstrapping) methods. The
general linear model allows directly testing for the covariation of
single-trial ERPs with response time using a bootstrap-t approach.
This determines the significance and direction of beta parameters
per sample point. We used a robust one sample r-test that tests if
the average effect significantly differs from zero. The observed
t-values were first computed. The data were then centered and 5000
bootstraps were made. Subjects were drawn randomly with replace-
ment. For every bootstrap, a one-sample -test was performed on the
bootstrap sample, subsequently storing the z-value. These boot-
strapped 7-values provide an approximation of the r-distribution
under HO. The P-values are then computed by comparing the
observed t-values to the bootstrapped z-distribution. As tests are per-
formed on multiple electrodes and sampling points, as is typical for
this approach (e.g., Gaspar et al., 2011; Pernet et al., 2011), testing
will give rise to false positives. To account for multiple compar-
isons, we used temporal clustering by which only clusters with a
mass (sum of 7 values) bigger than the 95% percentile of the null
distribution are considered significant. In this case, the null distribu-
tion corresponds to the maximum cluster value across electrodes
measured at each bootstrap computed on nullified data (Pernet ez al.,
2015).

In a similar vein, for a repeated-measures aNova, the observed F-
values were first calculated. Following this, an F-table under HO
was made. First, the data were centered for each condition so that
each cell of the aNova had a mean of zero. Second, the centered
data were used to estimate F-distributions under HO. Subjects were
sampled with replacement and the associations between observations
were kept. Five thousand bootstraps were made. P-values were
obtained by comparing the observed and bootstrapped F-values, and
multiple comparison corrections were handled in the same manner
as the 1-sample 7-tests.

Results
Behavioral performance

The average response times to go-stimuli in the stop-relevant blocks
were 466.7 ms (SD 116.6), which were slower than (F; ;5 = 50.37;
P < .0001) those in the stop-irrelevant blocks 402.3 ms (SD 85.2).
This result indicates that participants were employing proactive
response slowing in the stop-relevant blocks, as expected. Overall,
accuracy in go-trials was high — in the stop-relevant blocks it was
98.9%, but slightly lower (3> = 8.12, P = 0.004) in the stop-irrele-
vant blocks at 98.3%. The SSRT was calculated using the integra-
tion method yielding an estimate of 242.8 ms (SD 37.5), a value in
line with previous research.

The DIC-based model selection procedure demonstrated that the
full model (model 1, DIC = —25009.1) best accounted for the data.
The next closest candidate model was the reduced model 2
(DIC = —24915.6), followed by model 3 (DIC = —24782.1), model
4 (DIC = —24658.7), and the model 0 (DIC = —22925.4). Based
on this selection criteria and posterior predictive checks, model 1
was chosen for further analysis. Two of the three estimated main
parameters showed significant differences between block types. In
particular, robust effects were observed for a raised response thresh-
old (a) and lower drift rates (v) in the stop-relevant blocks. Posterior
distributions of the three main parameters are shown in Fig. 2. With
respect to the response threshold, the P (drelevant > @irrelevany) = 0.94,
showing that indeed the response threshold is raised in the relevant
blocks. The drift rate is lower in the relevant blocks, P
(Virrelevant > Vielevan) = 0.92. As seen in Fig. 2, non-decision time

did not show evidence of being different between the blocks, P
(10;retevant < Oretevant) = 0.46. Overall, the results evidence a more
conservative response process in the stop-relevant blocks, and the
fact that the effects were seen on two parameters suggests that this
was brought about by multiple processes. Indeed, it is possible that
model 2 (full model sans 70) is the better fitting model, given that
DIC is known to be somewhat biased toward a model with greater
complexity (Plummer, 2008). However, the parameter estimates of
model 1 and model 2 are similar, so interpretation of the other two
parameters remains exactly the same.

Go-locked N1 ERP analysis

The average topography between 130 and 190 ms post Go-stimulus
is shown in Fig. 3 for correct Go-trials collapsed across the stop-
relevant and stop-irrelevant blocks. Channel locations and time
range for further analysis were selected based on this average across
both block types. The N1 electrodes were separately averaged in the
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F1G. 2. Hierarchical drift diffusion model results. Drift rate (top), response
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sities for both the irrelevant and relevant conditions of Model 1.
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left and right hemisphere (see black dots in Fig. 3) and a ranova
was used to test for differences between block type (stop-relevant
vs. stop-irrelevant) and laterality (left vs. right hemisphere) for the
data averaged between 130 and 190 ms post go-stimulus. Both
block type (F;, 5= 5.60, P =0.032, n2 =0.004) and laterality
(Fy45 = 6.12, P =0.026, n2 = 0.049) showed significant differ-
ences, but there was no significant interaction between the two
(Fi15=1.19, P =0.29, n2 = 0.0002). Note, that laterality was only
of peripheral interest, that we had no clear expectations, and that the
main effect only indicates that N1 amplitudes were generally larger
over one hemisphere. The mean amplitudes of the stop-relevant N1
were slightly more negative than in the stop-irrelevant condition.
Thus, a simplistic mapping between response speed and mean N1
amplitudes did not hold. (In fact, in our further linear models N1
analyses there were no categorical differences between block type in
a similar (the models also included RT, an error term, and were
bootstrap tests) repeated-measures ANOVA.) Yet, these effects are, as
indicated by the effect size, quite small. Indeed, this between-block
comparison is necessarily quite unspecific, and our a-priori analysis
plan was to investigate the relationship between response time and
N1 amplitudes within the two different block types, for which we
applied the single-trial-based analysis presented below.

Systematic variation in sensory processing of Go-signals
Single subject analysis and model fit

For each participant, all ten inferoposterior N1 electrodes were indi-
vidually taken into an analysis with the EEG signal modeled as a
linear function of the response time to investigate relationships to
go-stimulus processing across sampling points. Only correct go-trials
were taken into consideration. For the first-level statistical analysis,
single-trial ERPs were estimated for each individual at each of the

10 electrodes selected above between 130 and 190 ms. This resulted
in beta coefficients for the categorical block parameters, response
time parameters and noise, for each of these 10 electrodes and for
each sample point.

As expected, there was variation between individuals, electrodes
and sampling points modeled in terms of the estimated R>. The
F-values were queried for a maximum value F-statistic across indi-
viduals and sampling points. The maximum F-values had a range
from 4.14 to 16.18 over all individuals, with a mean of 8.35
(SD = 3.8). For each participant the max F-values were found to
be significantly different from a restricted model, using number of
linear predictors in the restricted model and participant trial num-
bers to calculate the appropriate degrees of freedom. Given that
each individual’s model had sample points within the N1 range
that were significantly explained by the design matrix, it was con-
cluded that the model fit was adequate to continue testing at the
second level.

Second level analyses

Group-level differences in the stop-relevant blocks of the RT beta
parameters were tested using a bootstrapping 1-sample #-test proce-
dure to synthesize individuals. Within the N1-related electrodes cho-
sen for analysis, a generalized pattern of N1 attenuation emerged as
RT increased. Estimated 7-values peaked with significant effects that
were centered roughly on 160 ms. Seven of the 10 electrodes
showed significant effects using uncorrected #-tests and an o level of
0.05. Electrodes started to show RT effects in the relevant beta
parameters capturing the relationship between RT and EEG ampli-
tude starting at 138 ms and lasting until 190 ms. A one-dimensional
temporal cluster analysis was further run on the model to correct for
multiple comparisons. This analysis demonstrated three electrodes,
two confined to the right posterior, and one to the left at a corrected
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P = 0.05 alpha level. The bootstrapped mean Betas and 95% confi-
dence interval for each of the three electrodes that survived temporal
cluster correction are plotted in Fig. 4. This shows the mean change
in mV per standard deviation unit of RT for the stop-relevant blocks
to further illustrate this relationship.

Differences in slowing between blocks

A ranova was used to directly test the differences between the stop-
relevant and stop-irrelevant trials and their relationship with
response slowing. The purpose of testing the difference between the
blocks was to ensure that the differences seen in the relevant blocks
was not simply due to response time fluctuations that would be seen
in an arbitrary forced choice task. Five thousand bootstrapped F-sta-
tistics were used in the analysis. Significant differences were found
to begin at 155 ms, and continue until 175 ms post stimulus depen-
dent on electrode, peaking at 164 ms, which is clearly within the
time course seen for the l-sample #-test. As in the 1-sample test,
seven of the 10 electrodes were found to be different between the
two beta parameters in the uncorrected tests, and these differences
overlapped between the tests. Three electrodes were found to be sig-
nificant at oo = 0.05 using the same clustering correction technique

0.7

Amplitude in mV per standard deviation

130 160 190
Time (ms)

FI1G. 4. Bootstrap mean Beta and 95% Confidence Intervals. Evolution of
mean Beta parameter for the three electrodes that survived multiple compar-
ison correction in the l-sample r-test of the stop-relevant block. Sampling
points that survived correction are marked as red dots.

used in the 1-sample test. Two of these cluster-corrected electrodes
overlapped with the previous 1-sample cluster-corrected analysis,
both in the right hemisphere. Thus, to summarize, Go-trials in stop-
relevant blocks displayed a systematic positive relationship between
N1 amplitudes and RTs, and this relationship was significantly
stronger than in the stop-irrelevant blocks, for which no clear rela-
tionship was found.

Discussion

The present EEG study investigated the neural processes underlying
proactive response inhibition during the stop-signal task in human
subjects, focusing on early attentional mechanisms. Based on a com-
parison of go-trials from different trial blocks in which stop-stimuli
were either task-relevant or not, we found that participants indeed
employed proactive response slowing in the relevant blocks, and a
hierarchical drift diffusion model indicated that this mostly relied on
a combination of differences in decision thresholds as well as in
drift rates. This effect was accompanied by a significant relationship
between the single-trial amplitudes in the visual N1 component in
the stop-relevant but not the stop-irrelevant task blocks. Given that
the N1 component is believed to index the level of attention paid to
the go-stimulus, these results seem to reflect a down-regulating
strategic process that proactively slows go-stimulus processing when
the response to this stimulus might have to be canceled.

The role of visual attention in response inhibition

Go-stimuli elicited a classic inferoposterior N1 component. This
component has been found to be larger the more attention that is
paid to a stimulus, which is thought to index the selective attentional
processing of the visual stimulus in mid- and high-level visual areas
(Vogel & Luck, 2000), and which has been found to ramify into dif-
ferences in response speed in attentional tasks (e.g., Talsma et al.,
2007). The traditional ERP analysis did not find evidence for an
inverse link between overall N1 amplitude and response speed,
given that the condition with slower responses had slightly larger
N1 amplitudes (and a very small effect size). Yet, given the differ-
ence in task requirements this between-block comparison is neces-
sarily quite unspecific (see also below) and our main interest was to
look at the relationship between fluctuations of response times and
EEG activity within the respective blocks. In line with our expecta-
tion, a multilevel single-trial EEG framework indicated that such a
link does exist when looking at fluctuations within the stop-relevant
condition. Specifically, this analysis demonstrated that as response
time increased, the N1 component attenuated, but only in the stop-
relevant blocks.

In general, the role of attention and other perceptual mechanisms
has mostly been neglected in the response inhibition literature
(although see e.g., Sharp et al., 2010 for a discussion concerning
whether response-inhibition-related fMRI activity might not in fact
reflect activity in the ventral attentional system). Yet, in order to
cancel a pre-potent response it is clear that first all relevant external
stimuli need to be detected. The overarching view is to attribute dif-
ferences in stopping latencies solely to differences seen in the effi-
cacy of a single centralized response-related inhibitory control
process (Verbruggen et al., 2014a). The current research suggests a
clear role for early perceptual/attentional modulations in the stop-
signal task. In this vein, the attenuation of NI amplitudes as
responses slow can be considered as an index of the discrimination
dedicated to the go-stimulus. A down-modulated go-stimulus pro-
cessing therefore appears to be advantageous for later inhibition via
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the positive relationship between successful inhibitory behavior and
longer response times in the independent race model. While our
inference is in principle a reverse one (inferring that attention was
affected by looking at a neurophysiological marker without explic-
itly modulating it through our task design), we point to the tight and
rather specific link between the N1 component and attention.

Crucially, the present data indicate that the relationship between
response slowing and attentional processing of the go-stimulus is
indeed under proactive control. An alternative notion would have
been that attentional go-stimulus processing randomly fluctuates
(e.g., as a function of general attentiveness). Yet, under a random-
fluctuation account one would expect similar modulations also in a
task context when Stop-stimuli are not task-relevant, which is coun-
ter to what we found here. Although this between-block comparison
might by itself not rule out non-strategic contributions, our notion
dovetails with recent work on Bayesian dynamic belief models,
which have found a very strong relationship between Go-trial
response time and the inferred subjective probability of a stop-stimu-
lus, which was also interpreted as being strategic in nature (Ide
et al., 2013).

Although perceptual mechanisms are usually neglected in
response-inhibition studies, there is still some supporting evidence
that attention to go-stimuli plays a role in adjusting response tenden-
cies. Previous MEG work has shown that the go-stimulus N1 com-
ponent was less pronounced in successful stop-trials as opposed to
unsuccessful stop trials, suggesting that paying less attention to the
Go-stimulus slows down responding, which in turn makes successful
inhibition more likely (Boehler et al., 2009; see also Knyazev et al.,
2008). Furthermore, when perceptual distractors in a stop-signal task
were presented over whole trials, inhibitory behavior was impaired,
and this impairment scaled with the degree of discrimination diffi-
culty (Verbruggen et al., 2014b). To add to this, using pre-stimulus
oscillatory EEG it was shown that a failure to lateralize occipital
alpha activity in response to an attentional cue was predictive of
false alarms (Bengson ef al., 2011). Taken together, these studies
suggest that the way in which sensory systems are adjusted to detect
relevant stimuli is an important aspect of response inhibitory behav-
ior.

Turning from go- to stop-stimulus processing, related studies have
shown that the attentional processing of the stop-stimulus plays an
important role in determining behavioral outcome, with enhanced
attention for successful stop-trials (e.g. Dimoska & Johnstone, 2008;
Bekker er al., 2005; see also Salinas & Stanford, 2013 for a related
finding in a countermanding saccade task, and Kramer et al., 2013),
or alternatively with the N1 as a marker of visual attention already
reflecting an inhibitory mechanism (Kenemans, 2015). One interest-
ing question here relates to the relationship between these modula-
tions of the attentional processing of the go-stimulus vs. stop-
stimulus in a given stop-trial, with one suggestion being that atten-
tional resources need to be shared across these different components
(Boehler et al., 2009; Pessoa, 2009). Given that at the moment of
go-stimulus presentation participants cannot know yet that a given
trial will be a stop-trial, this implies that such ‘anticipatory’ resource
sharing with a potentially upcoming stop-stimulus should also hap-
pen on regular go-trials. Yet, on the basis of the present data, we
cannot decide whether the observed effects relate to the anticipation
of possible (relevant) Stop-stimuli or whether the attentional pro-
cessing of go- and stop-stimuli proceed largely independently.

Although go-stimulus processing naturally precedes stop-stimulus
processing, this does not necessarily imply that such effects are the
earliest in time that possible mechanisms contributing to proactive
slowing could be occurring. For example, a number of studies have

Attention regulation in response inhibition 2101

related proactive response slowing to neural activity that precedes a
given stop-trial altogether (Cai et al., 2011; Majid er al., 2013;
Zandbelt et al., 2013). Similarly, it is likely that attentional control
settings are implemented before the presentation of a given trial.
Such preparatory effects may in fact be particularly likely in the pre-
sent case in a blocked strategic way because of the non-selective
nature of our manipulation. In contrast, other work investigating
proactive inhibition has employed selective stopping paradigms in
which, for example, one of two possible go-responses might have to
be inhibited (Aron, 2011), which might require a more refined and
selective mechanism than in our case where a global mechanism of
slowing down all responses is likely applied.

Relationship with motor-level inhibition and drift diffusion
models

Given the wealth of existing research linking proactive slowing to
parts of the response-inhibition network (see, e.g. Chikazoe et al.,
2009; Jahfari et al., 2010; Zandbelt & Vink, 2010; Boehler et al.,
2011; Lavallee et al., 2014; Van Belle et al., 2014), we do not con-
sider the present effect as the only mechanism underlying proactive
response slowing. Rather, we assume that different mechanisms
coexist, and that neurophysiological measures might be more sensi-
tive to the transient effect described here (but see an fMRI study by
Li et al., 2009 for possible involvement of sensory areas in response
slowing, as well as Van Belle et al., 2014; for the involvement of
dorsal attentional control areas in proactive response inhibition; and
Jahfari et al., 2015; for the interplay between the prefrontal cortex
and basal ganglia system with perceptual systems in response inhibi-
tion), but which may be less sensitive than fMRI to mechanisms that
act more directly on the motoric level. Consistent with this notion
of multiple mechanisms, our diffusion drift model of the behavioral
data indicated that more than one parameter was affected. Specifi-
cally, we replicated an effect on decision thresholds that has been
described previously (Verbruggen & Logan, 2009a), but we also
found a pronounced effect on drift rates. The latter has also been
reported before, but was found to be difficult to interpret (Logan
et al., 2014; but see, White er al., 2014). One possible explanation
is that decision-threshold adjustments are implemented within the
stopping network, whereas drift rate reflects the attentional mecha-
nism we describe here. The latter seems to intuitively fit well, given
that the attentional processing of a task stimulus clearly relates to
the speed with which it is being discriminated. It seems possible that
the balance between these different mechanisms is adjusted based
on strategy differences, as well as possibly being related to specific
features of a given task. In this study, we have focused a-priori on
attentional processes. In addition, possible subsequent mechanisms
in frontal or even subcortical areas that might be more directly
related to adjusted decision thresholds might be difficult to pick up
with EEG due to anatomical reasons (but see, O’Connell et al.,
2012; Twomey et al., 2015).

Another aspect in which the drift diffusion data seems relevant
concerns the fact that the comparison between the stop-relevant and
the stop-irrelevant blocks is necessarily somewhat unspecific. Specif-
ically, it is likely that more than just proactive inhibition differed
between the blocks. The fact that the stop-relevant blocks featured
the possibility of having to cancel a response creates a dual-task sit-
uation (and as far as representing this task rule, this is also true for
Go-trials), which has been suggested as an additional contributing
factor to response time differences (Verbruggen & Logan, 2009a;
see Zandbelt & Vink, 2010 for an attempt to circumvent this prob-
lem by parametrically varying the expectation of Stop-trials). Yet,
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the fact that non-decision time appears to not exert its effect
between blocks in the response process indicates that a dual-task
hypothesis is not very likely to account significantly for the
observed data (see Verbruggen & Logan, 2009a for an extended dis-
cussion related specifically to the stop-signal task). Consistent with
this, the faster response times in stop-irrelevant blocks were accom-
panied by lower accuracy, in line with a generally faster response
mode that comes at some cost for response accuracy. Still, the com-
parison probably suffers from some global differences between the
blocks, which in our opinion might in part have given rise to the
N1 differences in the ERP between blocks, which featured larger
Nls in the stop-relevant blocks and might reflect the generally
increased task requirements of the stop-relevant blocks. In contrast
to that, we consider it a major strength of the single-trial-based
approach, which was the main analysis of interest here, that such
global differences should play less of a role as far as differences in
behavior and EEG activity across trials within the different blocks is
concerned. Given that the task requirements remain stable across
those trials, we believe that our main finding of a single-trial-based
covariation between response time and the N1 component should be
mostly unaffected by global block differences.

Conclusion

In the current report we present evidence that strategic modulations
of the attentional processing of go-stimuli in a stop-signal task relate
to the degree of proactive response slowing on a single-trial level.
Specifically, an inverse relationship between single-trial amplitudes
of the visual N1 component and response speed during go-trials was
found in a context that might require response inhibition, while no
such relationship existed when response inhibition was never
required. This is in accordance with recent results suggesting a
strong dependency between go-trial behaviors and stopping (White
et al., 2014). The present attention-related effect likely coexists with
additional proactive inhibition mechanisms. Our findings specifically
emphasize the role of proactive attentional modulations in inhibitory
control, thus contributing to a more multifaceted view of proactive
control. Yet, integration of these disparate parts will be important to
better understand inhibitory deficiencies in the future.

Acknowledgements

This research was supported by the Ghent University Multidisciplinary
Research Platform ‘The integrative neuroscience of behavioral control’, and
U.S. NIH grants RO1-NS051048 and RO1-MHO060415 to M.G.W. The
authors gratefully acknowledge Cyril R. Pernet and Guillaume A. Rousselet
for statistical modeling support.

References

Aron, A.R. (2011) From reactive to proactive and selective control: develop-
ing a richer model for stopping inappropriate responses. Biol. Psychiat.,
69, e55-¢68.

Aron, A.R., Robbins, T.W. & Poldrack, R.A. (2014) Inhibition and the right
inferior frontal cortex: one decade on. Trends Cogn. Sci., 18, 177-185.

Bari, A. & Robbins, T.W. (2013) Inhibition and impulsivity: behavioral and
neural basis of response control. Prog. Neurobiol., 108, 44-79.

Bekker, E.-M., Kenemans, J.L., Hoeksma, M.R., Talsma, D. & Verbaten,
M.N. (2005) The pure electrophysiology of stopping. Int. J. Psychophys-
iol., 55, 191-198.

Bengson, J.J., Mangun, G.R. & Mazaheri, A. (2011) The neural markers
of an imminent failure of response inhibition. Neurolmage, 59, 1534—
1539.

Boehler, C.N., Munte, T.F., Krebs, R.M., Heinze, H.J., Schoenfeld, M.A. &
Hopf, .M. (2009) Sensory MEG responses predict successful and failed
inhibition in a stop-signal task. Cereb. Cortex, 19, 134—145.

Boehler, C.N., Appelbaum, L.G., Krebs, R.M., Hopf, J.M. & Woldorff,
M.G. (2010) Pinning down response inhibition in the brain—conjunction
analyses of the Stop-signal task. Neurolmage, 52, 1621-1632.

Boehler, C.N., Bunzeck, N., Krebs, R.M., Noesselt, T., Schoenfeld, M.,
Heinze, H.J., Munte, T.F., Woldorff, M.G. et al. (2011) Substantia nigra
activity level predicts trial-to-trial adjustments in cognitive control. J.
Cogn. Neurosci., 23, 362-373.

Cai, W., Oldenkamp, C.L. & Aron, A.R. (2011) A proactive mechanism for
selective  suppression of response tendencies. J. Neurosci., 31,
5965-5969.

Cai, W, Ryali, S., Chen, T., Li, C.S. & Menon, V. (2014) Dissociable roles
of right inferior frontal cortex and anterior insula in inhibitory control: evi-
dence from intrinsic and task-related functional parcellation, connectivity,
and response profile analyses across multiple datasets. J. Neurosci., 34,
14652-14667.

Chambers, C.D., Garavan, H. & Bellgrove, M.A. (2009) Insights into the
neural basis of response inhibition from cognitive and clinical neuro-
science. Neurosci. Biobehav. R., 33, 631-646.

Chikazoe, J., Jimura, K., Hirose, S., Yamashita, K., Miyashita, Y. & Konishi, S.
(2009) Preparation to inhibit a response complements response inhibition
during performance of a stop-signal task. J. Neurosci., 29, 15870-15877.

Dimoska, A. & Johnstone, S.J. (2008) Effects of varying stop-signal proba-
bility on ERPs in the stop-signal task: do they reflect variations in inhibi-
tory processing or simply novelty effects? Biol. Psychol., 77, 324-336.

Gaspar, C.M., Rousselet, G.A. & Pernet, C.R. (2011) Reliability of ERP and
single-trial analyses. Neurolmage, 58, 620-629.

Gelman, A. & Rubin, D.B. (1996) Markov chain Monte Carlo methods in
biostatistics. Stat. Methods Med. Res., 5, 339-355.

Huster, R.J., Enriquez-Geppert, S., Lavallee, C.F., Falkenstein, M. & Her-
rmann, C.S. (2013) Electroencephalography of response inhibition tasks:
functional networks and cognitive contributions. Int. J. Psychophysiol., 87,
217-233.

Huster, R.J., Plis, S.M., Lavallee, C.F., Calhoun, V.D. & Herrmann, C.S.
(2014) Functional and effective connectivity of stopping. Neurolmage, 94,
120-128.

Ide, J.S., Shenoy, P., Yu, A.J. & Li, C.R. (2013) Bayesian prediction and
evaluation in the anterior cingulate cortex. J. Neurosci., 33, 2039-2047.
Jahfari, S., Stinear, C.M., Claffey, M., Verbruggen, F. & Aron, A.R. (2010)
Responding with restraint: what are the neurocognitive mechanisms? J.

Cogn. Neurosci., 22, 1479-1492.

Jahfari, S., Waldorp, L.J., Ridderinkhof, K.R. & Scholte, H.S. (2015)
Visual information shapes the dynamics of cortico-basal ganglia path-
ways during response selection and inhibition. J. Cogn. Neurosci., 27,
1344-1359.

Kenemans, J.L. (2015) Specific proactive and generic reactive inhibition.
Neurosci. Biobehav. R., 56, 115-126.

Knyazev, G.G., Levin, E.A. & Savostyanov, A.N. (2008) A failure to stop
and attention fluctuations: an evoked oscillations study of the stop-signal
paradigm. Clin. Neurophysiol., 119, 556-567.

Kramer, U.M., Solbakk, A.K., Funderud, I., Lovstad, M., Endestad, T.,
Knight, R.T. (2013) The role of the lateral prefrontal cortex in inhibitory
motor control. Cortex, 49, 837-849.

Kruschke, J.K. (2010) Bayesian data analysis. Wires Cogn. Sci., 1, 658-676.

Lavallee, C.F., Meemken, M.T., Herrmann, C.S. & Huster, R.J. (2014) When
holding your horses meets the deer in the headlights: time-frequency char-
acteristics of global and selective stopping under conditions of proactive
and reactive control. Front. Hum. Neurosci., 8, 994.

Li, C.S.R., Chao, HH.A. & Lee, T.W. (2009) Neural correlates of speeded
as compared with delayed responses in a stop signal task: an indirect ana-
log of risk taking and association with an anxiety trait. Cereb. Cortex, 19,
839-848.

Logan, G.D. & Cowan, W.B. (1984) On the ability to inhibit thought and
action: A theory of an act of control. Psychol. Rev., 91, 295-327.

Logan, G.D., Van Zandt, T., Verbruggen, F. & Wagenmakers, E.-J. (2014)
On the ability to inhibit thought and action: general and special theories of
an act of control. Psychol. Rev., 121, 66-95.

Majid, D.S., Cai, W., Corey-Bloom, J. & Aron, A.R. (2013) Proactive selec-
tive response suppression is implemented via the basal ganglia. J. Neu-
rosci., 33, 13259-132609.

O’Connell, R.G., Dockree, P.M. & Kelly, S.P. (2012) A supramodal accumu-
lation-to-bound signal that determines perceptual decisions in humans.
Nat. Neurosci., 15, 1729-1735.

Pernet, C.R., Chauveau, N., Gaspar, C. & Rousselet, G.A. (2011) LIMO
EEG: a toolbox for hierarchical Llnear MOdeling of Elec-
troEncephaloGraphic data. Comput. Intell. Neurosci., 2011, 831409.

© 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, 44, 2095-2103



Pernet, C.R., Latinus, M., Nichols, T.E. & Rousselet, G.A. (2015) Cluster-
based computational methods for mass univariate analyses of event-
related brain potentials/fields: a simulation study. J. Neurosci. Meth.,
250, 85-93.

Pessoa, L. (2009) How do emotion and motivation direct executive control?
Trends Cogn. Sci., 13, 160—166.

Plummer, M. (2008) Penalized loss functions for Bayesian model compar-
ison. Biostatistics, 9, 523-539.

Ratcliff, R. (1978) A theory of memory retrieval. Psychol. Rev., 85, 59—108.

Salinas, E. & Stanford, T.R. (2013) The countermanding task revisited: fast
stimulus detection is a key determinant of psychophysical performance. J.
Neurosci., 33, 5668-5685.

Schmajuk, M., Liotti, M., Busse, L. & Woldorff, M.G. (2006) Electrophysio-
logical activity underlying inhibitory control processes in normal adults.
Neuropsychologia, 44, 384-395.

Sharp, D.J., Bonnelle, V., De Boissezon, X., Beckmann, C.F., James, S.G.,
Patel, M.C. & Mehta, M.A. (2010) Distinct frontal systems for response
inhibition, attentional capture, and error processing. Proc. Natl. Acad. Sci.
USA, 107, 6106-6111.

Spiegelhalter, D.J., Best, N.G., Carlin, B.R. & van der Linde, A. (2002) Baye-
sian measures of model complexity and fit. J. Roy. Stat. Soc. B, 64, 583-616.

Talsma, D., Mulckhuyse, M., Slagter, H.A. & Theeuwes, J. (2007) Faster,
more intense! The relation between electrophysiological reflections of
attentional orienting, sensory gain control, and speed of responding. Brain
Res., 1178, 92-105.

Twomey, D.M., Murphy, P.R., Kelly, S.P. & O’Connell, R.G. (2015) The
classic P300 encodes a build-to-threshold decision variable. Eur. J. Neu-
rosci., 42, 1636-1643.

Van Belle, J., Vink, M., Durston, S. & Zandbelt, B.B. (2014) Common and
unique neural networks for proactive and reactive response inhibition
revealed by independent component analysis of functional MRI data.
Neurolmage, 103, 65-74.

Attention regulation in response inhibition 2103

Verbruggen, F. & Logan, G.D. (2009a) Proactive adjustments of response
strategies in the stop-signal paradigm. J. Exp. Psychol. Human, 35, 835-854.

Verbruggen, F. & Logan, G.D. (2009b) Models of response inhibition in the
stop-signal and stop-change paradigms. Neurosci. Biobehav. R., 33, 647—
661.

Verbruggen, F., Liefooghe, B., Notebaert, W. & Vandierendonck, A. (2005)
Effects of stimulus-stimulus compatibility and stimulus-response compati-
bility on response inhibition. Acta Psychol., 120, 307-326.

Verbruggen, F., Chambers, C.D. & Logan, G.D. (2013) Fictitious inhibitory
differences: how skewness and slowing distort the estimation of stopping
latencies. Psychol. Sci., 24, 352-362.

Verbruggen, F., McLaren, I.P. & Chambers, C.D. (2014a) Banishing the
Control Homunculi in Studies of Action Control and Behavior Change.
Pers. Psychol. Sci., 9, 497-524.

Verbruggen, F., Stevens, T. & Chambers, C.D. (2014b) Proactive and reac-
tive stopping when distracted: an attentional account. J. Exp. Psychol.
Human, 40, 1295-1300.

Vogel, E.K. & Luck, S.J. (2000) The visual N1 component as an index of a
discrimination process. Psychophysiology, 37, 190-203.

White, C.N., Congdon, E., Mumford, J.A., Karlsgodt, K.H., Sabb, F.W.,
Freimer, N.B., London, E.D., Cannon, T.D. et al. (2014) Decomposing
decision components in the stop-signal task: a model-based approach to
individual differences in inhibitory control. J. Cogn. Neurosci., 26, 1601—
1614.

Wiecki, T.V., Sofer, I. & Frank, M.J. (2013) HDDM: Hierarchical Bayesian
estimation of the Drift-Diffusion Model in Python. Front. Neuroinform., 7,
14.

Zandbelt, B.B. & Vink, M. (2010) On the role of the striatum in response
inhibition. PLoS One, 5, e13848.

Zandbelt, B.B., Bloemendaal, M., Neggers, S.F.W., Kahn, R.S. & Vink, M.
(2013) Expectations and violations: delineating the neural network of
proactive inhibitory control. Hum. Brain Mapp., 34, 2015-2024.

© 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd

European Journal of Neuroscience, 44, 2095-2103



