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6 Methods for the Estimation and Removal of Artifacts and Overlap
in ERP Waveforms

Durk Talsma and Marty G. Woldorff

In an ideal world, one would have no need for artifact detection mechanisms at all.
Fventrelated potentials (ERPs) are calculated using the approach of averaging the re-
corded EEG activity of many repetitions of the same stimulus condition (often referred
o as “trials’), which assumes that for any given repetition, the recorded EEG consists
of a signal part (ERP) and a noise part (background EEG). The noise part is assumed to
be uncorrelated with the signal, and therefore, given an infinite number of trials, the
noise part should cancel out and the remaining ERP would be a reflection only of the
event-related brain activity.

Unfortunately, such an ideal world does not exist. In reality, various recording arti-
facts do tend to correlate with the signal; some artifacts are always of the same polarity
(and thus do not cancel out during signal averaging), subjects may blink their eyes or
make movements at consistent times relative to the onset of a visual stimulus (causing
large time-locked amplitude deflections on the frontal EEG channels), and it is never
possible to record an infinite number of trials to lose these artifacts compietely. More-
over, as we will see later in this chapter, the very nature of the experimental design
required for specific scientific questions, namely that of ERP components from adja-
cent trials that are overlapping onto the current one, may introduce a more subtle type
of distortion (Woldorff, 1993). As we will discuss later, overlap can be a specific prob-
lem when stimulus presentation rates are high.

Above we distinguished three different elements confributing to any given single
trial: signal (ERP), noise (background EEG), and artifacts. Although not explicitly men-
tioned, it follows intuitively from this description that whereas cerebral activity gen-
erates the signal and the background EEG noise, artifacts are typically generated by
external sources, such as eyes, muscles, or recording equipment. We therefore propose
the following working definition of an artifact:

Artifacts are occurrences of any given electrical activity that can be recorded by EEG
equipment, which is not originating from cerebral sources, and either clearly distinguishable
from the recorded background EEG or substantially large enough to modify the observed ERP
waveform from its frue waveform.
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According to this definition, overlap is not a true artifact, because brain activity
generates the overlapping ERP components. However, this activity is unwanted, be-
cause it is activity that is not the result of processing the current trial type, but of
processing the preceding or succeeding trial,

Because artifacts can distort the observed ERP waveform, it is necessary to find some
way to estimate and remove these artifacts from the EEG signal. One method is based
on the principle of detecting artifacts and excluding trials on which they are detected.
In general, this method is effective; however, one should keep in mind that when
using very strict criteria, the rejection method may result in a large number of false
alarms because naturally occurring high-amplitude EEG waves may trigger the artifact
detection algorithm, therefore excluding a large number of trials and, hence, vield
again a very poor signal-to-noise ratio. For this reason, artifact removal based on the
exclusion of artifact-contaminated trials should strive for a careful balance between the
severity of the artifacts rejected and the number of trials incladed in the final average.
The spike, diift, and eyeblink detection algorithms we discuss below are good examples
of this group of methods.

Other methods are based on the principle of not only detecting the presence of arti-
facts, but also on estimating the relative size of the artifact and correcting (i.e., remov-
ing) it. One obvious advantage of these methods is that correcting artifacts leaves more
trials available for averaging, and thus makes it possible to obtain a better signal-to-
noise ratio of the observed ERP. A disadvantage of this method, however, is that if the
estimations of the artifact are poor, the errors induced by subtracting these can be large
enough to substantIally distort the observed ERP. This group of methods includes the
eyeblink correction and overlap removal methods.

This chapter discusses three different types of artifacts and presents methods to re-
move them. In order of increasing complexity, we will discuss the following types of

artifacts: (1) instrumentation artifacts, (2) eye movement artifacts, and (3) overlap from
adjacent trials.

Instrumentation Artifacts

A number of sources can generate instrumentation artifacts. Instrumentation artifacts
consist, among others, of high-frequency transient activity or high-frequency back-
grourd noise; or low-frequency drifts that can be caused by slow polarization of
electrodes, cephalic skin potentials (e.g., Picton & Hillyard, 1972), or badly placed
electrodes. In many cases, these artifacts are in the frequency range that is outside that
of interest in ERP research (which is typically from about 0.1 to about 20 Hz). When
this is the case, applying an off-line digital bandpass filter (i.e., applied after the fact)
might be sufficient to reduce the noise contributed by the artifact to acceptable levels

Artifacts and Overlap in ERP Waveforms

(see chapter 5 of this volume). When this is not the case, the
eliminate-—or at least greatly attenuate—these types of artifact

Transient Activities

Fisch (1991) identifies a number of different artifacts that, altl
ences in amplitude, frequency of occurrence, and scalp distril
commeon characteristic for automatized detection of these art
mostly consist of high-amplitude spikes that are easily detecta
amplitade test. These artifacts are caused by muscle activity, 1
graphic (ECG) activity, blood-flow pulse waves, and electrode
We base the description of each artifact in the following sectio
chapter 6.

Muscle Activity Muscles can cause transient high-amplitude :
generated by scalp and face muscles in frontal and temporal
may be recorded by electrodes nearly anywhere on the scalp
fact can often be reduced, or éven completely eliminated, b
relax, drop the jaw or open their mouth slightly, or change tl
type of artifact occurs on a single electrode, pushing on or reay
sometimes stop it.

Movement Head and body movements or movement of el
artifacts even when all electrodes make good mechanical and
types of artifacts are often erratic and not repetitive, unless th
cal. This type of artifact can result from tremor, chewing or sw
movements.

Electrocardiographic Activity ECG activity can be picked u
recordings with wide interelectrode distances, especially in !
and to the left ear. The artifact may appear in all channels i
used and it is being picked up at that reference, or it can b
Small artifacts may reflect the R-wave of the ECG, whereas 1
additional ECG components. The R-wave usually appears ma:
terior scalp regions, because the main cardiac dipole produci
and directed diagonally from right to left and from anterior tc

Pulse-Wave Artifacts Periodic waves of smooth or triangul
up by an electrode on or near a scalp artery as the result of b
ing slight changes of the electrical contact between electrod



nition, overlap fs not a true artifact, because brain activity
g ERP components. However, this activity is unwanted, be-
s not the result of processing the carrent trial type, but of
o1 succeeding trial.

stort the observed ERP waveform, it is necessary to find some
ove these artifacts from the EEG signal. One method is based
ing artifacts and excluding trials on which they are detected.
is effective; however, one should keep in mind that when
the rejection method may result in a large number of false
dccurring high-amplitude EEG waves may trigger the artifact
clore excluding a large number of trials and, hence, yield

0-noise ratio. For this reason, artifact removal based on the

minated trials should strive for a careful balance between the

ected and the number of trials included in the final average.

nk detection algorithms we discuss below are good examples

1 on the principle of not only detecting the presence of arti-
17 the relative size of the artifact and correcting (i.e., rernov-
tage of these methods is that cotrecting artifacts leaves more
1g, and thus makes it possible to obtain a better signal-to-
ERP. A disadvantage of this method, however, is that if the
e poor, the errors induced by subtracting these can be large
tort the observed ERP. This group of methods includes the
erlap removal methods.

ree different types of artifacts and presents methods to re-
creasing complexity, we will discuss the following types of
n artifacts, (2} eve movement artifacts, and (3) overlap from

nerate instrumentation artifacts. Instrumentation artifacts
ligh-frequency transient activity or high-frequency back-
lency drifts that can be caused by slow polarization of
tentials {e.g., Picton & Hillyard, 1972}, or badly placed
}ese artifacts are in the frequency range that is outside that
which is typically from about 0.1 to about 20 Hz). When
off-line digital bandpass filter {i.e., applied after the fact)
> the noise contributed by the artifact to acceptable levels

(see chapter 5 of this volume). When this is not the case, there are other methods to
eliminate—or at least greatly attenuate—these types of artifacts from the ERPs.

Transient Activities :
Fisch (1991) identifies a number of different artifacts that, although marked by differ-
ences in amplitude, frequency of occutrence, and scalp distribution, share one useful
common characteristic for automatized detection of these artifacts. Inn particular, they
mostly consist of high-amplitude spikes that are easily detectable using a peak-to-peak
amplitude test. These artifacts are caused by muscle activity, movement, electrocardio-
graphic (ECG) activity, blood-flow pulse waves, and electrode or equipment problems.
We base the description of each artifact in the following section mainly on Fisch 1991,
chapter 6.

Muscle Activity Muscles can cause transient high-amplitude spikes, which are mainly
generated by scalp and face muscles in frontal and temporal regions; however, they
may be recorded by electrodes neatly anywhere on the scalp surface. This type of arti-
fact can often be reduced, or even completely eliminated, by asking the subjects to
relax, drop the jaw or open their mouth slightly, or change their position. When this
type of artifact occurs on a single electrode, pushing on or reapplying the electrode can
sometimes stop it,

Movement Head and body movements or movement of electrode wires can cause
artifacts even when all electtodes make good mechanical and electrical contact. These
types of artifacts are often erratic and not repetitive, unless the movement is rhythmi-
cal. This type of artifact can result from tremor, chewing or sucking, breathing, or head
movements.

Electrocardiographic Activity ECG activity can be picked up in the EEG mainly in
recordings with wide interelectrode distances, especially in linkages across the head
and to the left ear. The artifact may appear in all channels if a common reference is
used and it is being picked up at that reference, or it can be in just a few channels.
Small artifacts may reflect the R-wave of the ECG, whereas larger artifacts can reflect
additional ECG components. The R-wave usually appears maximally over the left pos-
terior scalp regions, because the main cardiac dipole producing the R wave is positive
and directed diagonally from right to left and from anterior to posterior.

Pulse-Wave Artifacts Periodic waves of smooth or triangular shape may be picked
up by an elecirode on or near a scalp artery as the result of blood pulse waves produc-
ing slight changes of the electrical contact between electrode and scalp. Fisch {1991)
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reports that this is more likely to happen with electrodes in the frontal or temporal
areas than with electrodes in the posterior scalp regions.

Electrode- or Equipment-Related Artifacts Most artifacts in this category are dis-
tinguished from cortical activity in that they seem to be superimposed on cortical
recordings and/ot appear only in channels connected to one electrode. Although some
of these have characteristic shapes, others might resemble cerebral activity. A common
artifact in this category is “electrode popping,” which is due to a sudden change of
electrode contact, causing large amplitude changes that rise and fall abruptly. Other
electrode artifacts drift more slowly and may resemnble cerebral slow waves {(see below).
Because this type of artifact is mainly due to faulty electrodes or equipment, the first
step in avoiding these types of artifacts is to check all the connections: the electrode
may be detached or loose, the lead wire may be broken, or the conductive paste may
have dried. Next, check the electrode impedance. In addition, check that all connec-
tions between electrodes and amplifier are sufficiently dry. We have’ experienced that a
residual amount of moistness in the connectors linking the electrocaps to the switch-
board (as a result of washing the caps after a previous recording session) can cause
substantial drifts on a number of channels. Finally, carefully consider using disposable
sponge disks (to redisiribute the pressure of cap-mounted electrodes on the subject’s
head), as we have experienced that these can lift the electrodes from the scalp and
cause frontal channels to drift.

Spike Detection When the number of trials containing spikes is low, relative to the
number of clean trials, and the onset of the artifact is random with respect to the onset
of the event of interest, selective averaging will by itself largely reduce the distortion of
the ERP waves due to spike occurrence. For example, if a typical ERP consists of aver-
aging together 100 trials and a spike has an average amplitude of 50 uV, then after
averaging, the contribution of each single spike to the final average is reduced to (0.5
1V, assuming that these spikes do not overlap in time. Although this example shows
that selective averaging can seriously reduce amplitude deflections from spike artifacts
in EEG data, even averaging a full 100 trials will reduce the effect of spike artifacts to an
amplitude difference that is of the same magnitude of amplitude as a typical ERP effect.
To illustrate this, we present data from a single subject originally collected for a study
on non-spatial intermodal attention (Talsma & Kok, 2001). Figure 6.1 shows this sub-
ject’s ERP response to a visual stimulus. In this particular recording, some of the trials
were contaminated by large-amplitude spike artifacts, but they were very low in num-
ber. More specifically, on 4 out of 105 trials, spikes with amplitude changes of up to
160 uV between two consecutive samples (4 ms) were detected, due to a popping
- reference electrode. These spikes were detected using a relatively simple peak-to-peak
amplitude detection algorithm (see appendix I} configured to detect amplitude

Artifacts and Overlap in ERP Waveforms

3V

Trial 2 Trial 4

=50 puv

b)

Figure 6.1

Fxample of the effectiveness of excluding trials containing spike
Comparison of an ERP waveform with spike trials included (soli
Including trials containing spike artifacts in this example can lead
in the final averages. (b) examples of four individual trials contai
the distortion caused by each of these spike-trials. Notfice that triz
same spike, but shified in time, due to the relatively high stimulus

deflections of more than 50 uV per 4 ms. As figure 6.1 shc
the average results in spike-related distortions of about 1

It is best to reject trials when spikes with high amplitude
150 pV). It is difficult to give an exact criterion for spike 1
distortion of the averaged ERP waveforms depends on bo
of spike occurrence. In general, excluding a few trials wit]
help improve the quality of the ERP waveform, but excl
amplitude artifacts will generally not help improve this «
cause the quality of the ERP waveform to decrease beca
number of rejected trials. Because of this, sometimes an.
determining the spike rejection criteria on the basis of th
signal. An example of such a method excludes trials fro
electrical activity exceeds that of two or more standard de
Although this method appears to work reasonably well,
rejections of trials when low background activity in tl
method to use low rejection criteria.



likely to happen with electrodes in the frontal or termnporal
s in the posterior scalp regions.

t-Related Artifacts Most artifacts in this category are dis-
activity in that they seem to be superimposed on cortical
only in channels connected to one electrode. Although some
ic shapes, others might resemble cerebral activity. A common
s “electrode popping,” which is due to a sudden change of
g large amplitude changes that rise and fall abruptly. Other
ore slowly and may resemble cerebral slow waves (see below).
ict is mainly due to faulty electrodes or equipment, the first
pes of artifacts is to check all the connections: the electrode
, the lead wire may be broken, or the conductive paste may
he electrode impedance. In addition, check that all connec
ind amplifier are sufficiently dry. We have experienced that a
ness in the connectors linking the electrocaps to the switch-
hing the caps after a previous recording session) can cause
nber of channels. Finally, carefully consider using disposable
ate the pressure of cap-mounted electrodes on the subject’s

enced that these can lift the electrodes from the scalp and
drift.

he number of trials containing spikes is low, relative to the
1 the onset of the artifact is random with respect to the onset
lective averaging will by itself largely reduce the distortion of
€ occurrence. For example, if a typical ERP consists of aver-
and a spike has an average amplitude of 50 uV, then after
i1 of each-single spike to the final average is reduced to 0.5
pikes do not overlap in time. Although this example shows
0 serjously reduce amplitude deflections from spike artifacts
g a full 100 trials will reduce the effect of spike artifacts to an
s of the same magnitude of amplitude as a typical ERP effect.
ent data from a single subject originally collected for a study
attention (Talsma & Kok, 2001). Figure 6.1 shows this sub-
ual stimulus. In this particular recording, some of the trials
e-amplitude spike artifacts, but they were very low in num-
+ out of 105 trials, spikes with amplitude changes of up to
secutive samples (4 ms) were detected, due to a popping
spikes were detected using a relatively simple peak-to-peak
ithm (see appendix II) configured to detect amplitude

s
AR RITEALS AT Y AT R T R WY AR IS

Trial 4

igure 6.1
E}?al::lple of the effectiveness of excluding trials containing spike artifacts on ERP averages.. (@
Comparison of an ERP waveform with spike trials included (solid) .and excluded (dotted line).
Including trials containing spike artifacts in this example can lead to distortions of about 1-2 pV
in the final averages. (b) examples of four individual trials containing spikes. Panei {g) indicates
the distortion caused by each of these spike-trials. Notice that trials 1 and 2 actually contain the
same spike, but shifted in time, due fo the relatively high stimuius presentation rate.

deilections of more than 50 gV per 4 ms. As figure 6.1 shows, including spike trials in
the average results in spike-related distortions of about 1 uV in the averaged ERP wave.

It is best to reject trials when spikes with high amplitudes are present {i.e., more than
150 pV). It is difficult to give an exact criterion for spike rejection, because the relative
distortion of the averaged ERP waveforms depends on both frequency and amplitude
of spike occurrence. In general, excluding a few frials with high-amplitude spi.kes will
help improve the quality of the ERP waveform, but excluding many trials with low-
amplitude artifacts will generally not help improve this quality further—it may exf*en
cause the quality of the ERP waveform to decrease because of an unacceptably high
number of rejected trials. Because of this, sometimes an alternative metho_d is useful,
determining the spike rejection criteria on the basi; of the statistical properties of *fhe
signal. An example of such a method excludes trials from further analysis on which
electrical activity exceeds that of two or more standard deviations of the mean voltage.
Although this method appears to work reasonably well, it is still susceptible to falste
rejections of trials when low background activity in the recorded EEG causes this
method to use low rejection criteria.
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As an alternative, when the duration of the artifact is short—not more than a few
milliseconds—one could also consider corfecting the artifact by interpolating around
the occurrence of the artifact. In general, the estimated interpolation error will be
small, compared to the error caused by the artifact. Therefore the signal-to-noise ratio
of ERPs composed of artifact-interpolated trials will be larger than that of ERP averages
composed of either all the trials (with no correction or rejection), or than that of ERP
averages composed of only the artifact-free trials (i.e., after rejection of the trials with
artifacts).

Periodic Noise

The next type of basic recording artifacts we cover consists of periodic noise. We subdi-
vide this group of artifacts into two different categories. The first consists of exogenous
artifacts, mainly caused by sources of interference outside the subject (i.e., from the
recording equipment or the electrical environment}. The second source of periodic
“artifact” is endogenous to the subject and consists primarily of unwanted rhythmic
brain activity with a disproportionately large amplitude.

Interference The most common artifact due to interference comes from power lines
and equipment. This interference has a frequency of 60 Hz in North America, and of
50 Hz in most other countries. This artifact is most typically picked by electrodes with
poor connections, that is, by electrodes with high impedances, which causes the wires
running from these electrodes to function as antennae, picking up environmental
electrostatic noise. Although faulty or high-impedance electrodes may pick up this arti-
fact, and they may appear in one or a few channels, inordinately strong interference
can cause artifacts even with good recording electrodes and equipment; these artifacts
are then likely to appear in all channels of all recordings made in this particular setting.
Interference artifacts may be introduced either electrostatically by unshielded power
cables and regardless of current flow, or electromagnetically by strong cutrents flowing
through cables and equipment such as transformers or electromotors. Shielding the
offending power cables and using a shielded room for the recording can reduce elec-
tromagnetic interference by proper wiring of the power cables. An effective method
of removing line noise is by applying a low-pass moving average (see figure 6.2). Figure
6.2b shows the frequency response of a number of moving average filters with lengths
of 4, 9, and 27 points. We can compute the frequency response of such a moving
average filter using the following equation
sin{rf M)
Hift =37 sin{af)

where H is the frequency response function and M is the length of the moving average
filter. The frequency [ runs between 0 and 0.5 times the sample frequency. For f =0,
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use H[f] = 1. As figure 6.2b shows, using a 9-point moving average will fully attenuate
frequencies at 56 Hz and strongly reduce frequencies in the band around 60 Hz, effec-
tively removing line-noise artifacts.

Rhythmic Activity Although technically not an artifact according to our working def-
inition, rthythmic FEG activity can pose a number of problems to an experimenter that
are similar in nature to real artifacts. Therefore, we conclude this section on periodic
noise with a brief discussion of these EEG waves and the specific problems they pose in
ERP research. '

One of the most common brain rhythms consists of sinusoidal waveforms in the
frequency band between 8 and 12 Hz, known as the alpha band, and which peaks at 10
Hz. These alpha waves are observed mostly over parietal and occipital recording sites
and more so when subjects have their eyes closed or are drowsy. Thus, they can be
an indication of a subject’s fatigued state. Alpha activity takes many trials to average
out, because it is of high amplitude and because of the tendency of alpha waves to
sometimes synchronize with stimulus presentation. The presence of alpha waves differs
strongly from subject to subject, and when a subject is producing a particularly large
amount of alpha activity, it may be necessary to discard him or her from inclusion in
the analysis. .

Large alpha waves might be a particular problem when ERPs are composed of limited
numbers of trials. For example, in many attention studies, subjects are required to re-
spond to an infrequent number of so-called target stimuli. Because targets are infre-
quent, ERPs to these targets are therefore composed of only a low number of trials.
Therefore, these ERPs are generally more difficult to interpret, because of the lower
signal-to-noise ratio.! This is particularly a problem when large alpha waves are found,
because the residual alpha wave activity in the targets wifl be substantially larger than
the alpha activity still present in more frequent non-target ERPs (see figure 6.3).

Residual alpha activity in ERP averages can be reduced by jittering the stimulus pre-
sentation, in ranges of 100 ms, or multiples of 100 ms. By jittering the stimulus pre-
sentation from trial to trial, the onset of the ERP response will be random with respect
to the phase of the alpha wave in the background of the ERP. Because the dominant
frequency in the alpha band is around 10 Hz, one cycle of the alpha wave will take
about 100 ms to complete. Therefore, randomly jittering the stimulus presentation
over such a 100 ms range will, on average, have the stimulus presentation occur
equally on each phase of the alpha wave, causing the background alpha activity to
cancel out during averaging.

Slow Drifts and Amplifier Saturations
Slow-wave activity such as those related to anticipatory processes ([CNV]; Walter et al.,
1964), directing of attention (Hopf & Mangun, 2000), or working memory processes
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Ilustration of excessive rhythmic brain activity (large alpha waves). Plotted here are the BRP
waveforms to a visual target stimulus cornposed of 28 artifact free trials, vs. a similar attended
standard, consisting of 102 artifact free trials. Notice that because the target ERP is composed of
onty one-third of the trials as the standard ERP, the signal-to-noise ratio is significantly reduced
and the contribution of background activity is still present, obfuscating the true ERP components
such as the P1 or the N1.

{(Kiaver et al., 1999) typically has the same frequency content as slow drifts caused by
skin potentials or incorrectly placed electrodes. Slow drifts are mainly a problem when
EEG recordings are made in DC mode, that is, when no high-pass filter is applied dur-
ing data acquisition. This type of recording is typically made when slow wave activity,
such as described above, 1s of interest. Therefore, if such is the case, it is necessary to
detect large linear drifts in these recordings and reject those trials in which any given
channel vields a linear trend that exceeds a previously established threshold. Trend
detection can be done through linear regression by minimizing the following equa-
tion, to determine g and b

2
) =) (6.1)
i—1 Oi .

in which x represents the observed time series, b any linear trend present in the
observed time series x, and a an intercept (DC value) at x¢. After minimizing equation
6.1, the value of b can be compared to a preset threshold and if this threshold is
exceeded, this trial can be rejected.

Figure 6.4 shows FRP data from a single subject that was originally recorded for a
study on spatial intermodal attention (Talsma & Kok, 2002). In this particular record-
ing a substantial amount of drifting channels were observed, because of a loosely con-

- nected reference electrode. Figure 6.4 shows an auditory ERP generated by averaging

182 frials, including trials containing drifting channels, This full ERP is compared to
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Figure 6.4

Effectiveness of drift removal using linear trend detection on ERP waveforms. (@) Example of four
individual trials containing a large positive-going drift; (b) example of four similar trials, but now
drifting negatively; (¢} difference in the resulting-single-subject ERP, resulting from exciuding trials
with large drifts. : '

the same ERP response, where 77 trials with either a positive or negative linear trend of
more than 10 pV/s were excluded from the average, thus leaving 105 drift-free trials.
This example illustrates two important aspects of drift detection: (1) Despite the fact
that slow channel drift was exceptionally high in this particular recording, and also
despite the fact that the degree of drift on affected trials was high, the difference in
observed ERP between including and excluding drifting trials is relatively small. The
reason for this is that in this example the direction of drift (positive or negative) was
random with respect to stimulus presentation and therefore positive and negative
drifts largely cancelied out. {2) Even though the difference in ERP signal resulting from
excluding drifting channels is relatively small in our example, it is still somewhere
in the order of 1 to 2 pV, which is in the same order of magnitude as a typical experi-
mental ERP effect, and therefore there would be an advantage of rejecting or correcting
for drifting channels. When using a drift detection mechanism as described above, one

Artifacts and Overlap in ERP Waveforms

should make sure to use a substantially long time window (.
culate the drift, because otherwise the drift detection algorit
amplitude changes. Instead of rejecting trials containing la
choose to correct these trials by subtracting the estimated
served data:

One should take a number of issues into consideration whe
nels. First, in some cases, channels can show a rapid drift in
then followed by a much slower drift into the opposite pola
ing channels, the experimenter should make sure to detect b
itive drifts. Otherwise the “drift free’” ERPs will generally be d
could be even worse, because negative- and positive-going
anymore. We will give an illustration of this below, when we
of not correctly detecting the post blink-return drift in the
figure 6.5).

Another problem related to drifting channels is amplifier
Saturation occurs when a continuously increasing (or decre
the edge of the amplification or digitization range, at whic
clipped off at the maximum (or minimum) digitization valu
line. Again, this problem is most frequently encountered wh
mode (i.e., without the use of a hardware high-pass filter). An
can be detected by scanning the digitized output signal for
same digitization unit. However, line noise can cause small

- output, making the strict versions of the above-described test

to scan for flat lines using a blocking/flat line algorithm thai
variations in signal that may occur even during blocking, st
describes. The main difference between the peak detection al
and the flat line detection algorithm is that the latter repor
when the peak-to-peak amplitude is smaller than the thres
reports a positive identification when the observed peak-c
than this threshold. Obviously, one should use this functi
recorded signal stays within a very small amplitude range, st
tial period of time (e.g., 500 ms).

Eye Movements and Eyeblinks

Two distinctly different processes generate ocular artifacts c
and saccades. The eyeball is polarized, with the cornea be
to the retina. Saccade potentials are caused by rotation of
whereas blink potentials are caused by the eyelid sliding
charged cornea, permitting current to flow up toward the fc



e Ty TSRS AR AV TR Ly M VRS

———— Without Drift Detection
‘With Drift Detection

using linear trend detection on ERP waveforms. () Example of four
large posiiive-going drift; (¥) example of four similar trials, but now
ce inl the resulting single-subject ERP, resulting from excluding trials

iere 77 trials with either a positive or negative linear trend of
ccluded from the average, thus leaving 105 drift-free trials,

two important aspects of drift detection: (1) Despite the fact
as exceptionally high in this particular recording, and also
legree of drift on affected trials was high, the difference in
Tuding and excluding drifting trials is relatively small. The
his example the direction of drift (positive or negative) was
timulus presentation and therefore positive and negative
- (2) Even though the difference in ERP signal resulting from
1s is relatively small in our example, it is still somewhere
which is in the same order of magnitude as a typical experi-
refore there would be an advantage of rejecting or correcting
n using a drift detection mechanism as described above, one

Artifacts anqa vverlap In eky YWaverorms 145

should make sure to use a substantially long time window (preferably 1 or 2 s) to cal-
culate the drift, because otherwise the drift detection algorithm is susceptible to local
amplitude changes. Instead of rejecting trials containing large drifts, one could also
choose to correct these trials by subtractih_g the estimated linear trend from the ob-
served data. ‘

One should take a number of issues into consideration when detecting drifting chan-
nels. First, in some cases, channels can show a rapid drift into one direction, which is
then followed by a much slower drift into the opposite polarity. When detecting drift-
ing channels, the experimenter should make sure to detect both the negative and pos-
itive drifts. Otherwise the “drift free” ERPs will generally be distorted by a net drift that
could be even worse, because negative- and positive-going drifts do not cancel out
anymore. We will give an illustration of this below, when we discuss the consequences
of not correctly detecting the post blink-return drift in the vertical EOG channel {(see
figure 6.5).

Another problem related to drifting channels is amplifier or digitization saturation.
Saturation occurs when a continuously increasing (or decreasing) EEG signal reaches
the edge of the amplification or digitization range, at which point the true signal is
clipped off at the maximum (or minimum) digitization value and will appear as a flat
line. Again, this problem is most frequently encountered when data is recorded in DC
mode (i.e., without the use of a hardware high-pass filter). Amplifier saturation artifacts
can be detected by scanning the digitized output signal for repeated occurrences of the
same digitization unit. However, line noise can cause small fluctuations in the digital

- output, making the strict versions of the above-described test fail. Therefore, it is better

to scan for flat lines using a Mocking/flat line algorithm that allows for the very small
variations in signal that may occur even during blocking, such as the one appendix 11
describes. The main difference between the peak detection algorithm from appendix IT
and the flat line detection algorithm is that the latter reports a positive identification
when the peak-to-peak amplitude is smaller than the threshold, whereas the former
reports a positive identification when the observed peak-to-peak amplitude is larger
than this threshold. Obviously, one should use this function to check whether the
recorded signal stays within a very small amplitude range, such as 1 pV, for a substan-
tial period of time (e.g., 500 ms).

Eye Movements and Eyeblinks

Two distinctly different processes generate ocular artifacts originating from eyeblinks
and saccades. The eyeball is polarized, with the cornea being positive with respect
to the retina. Saccade potentials are caused by rotation of this corneoretinal dipole,
whereas blink potentials are caused by the eyelid sliding down over the positively
charged cornea, permitting current to flow up toward the forehead region (Lins et al.,




126 ) . Durk Talsma and Marty G. Woldorff

1993b; Matsuo, Peters, & Reilly, 1975). The potentials both of these processes generate
are typically large, and therefore these eye movements and blink related activities
should always be recorded in an electro-oculogram (EOG) using electrodes near the
eves (Picton et al., 2000). Typical EOG recordings consist of the recording of a vertical
EOG (vEOG), expressed as a differential recording between two electrodes placed at
locations directly above and below the eyes, and a horizontal EOG (hEOG), which is
the difference of two electrodes placed at the outer canthi of the left and right eye. In
some cases, a radial EOG (fEOG) is obtained, which is the average amplitude of the two
vertical EOG electrodes, referenced against a distant electrode location, such as Pz or
Oz. The tEOG is generally not employed in EOG correction (e.g., Croft & Barry, 2002),
but some think it is necessary to account for eye movement in the plane perpen-
dicular to both horizontal and vertical planes (Elbert et al.,, 1985) and others use it to
account for the eyelid component of blinks (Croft, 2000). Although ocular artifacts
most strongly affect frontal electrodes, diminishing in amplitude as one moves poSte-
riorly back over the scalp, they can still be observed on electrodes located as far away
from the eyes as Ol or OZ.

Because ocular artifacts are of such large amplitude, one should inform subjects
about the effect of artifacts on EEG recordings. In many EEG studies, therefore, subjects
are instructed to fixate their eyes on a central point throughout length of a block of
trials and to tty to minimize blinking during a trial as much as possible. When subjects
comply with this, the number of ocular artifacts on any given run is typically low (on
the order of 10 percent of all trials). Trials that do contain EOG artifacts can then be
handled in a number of different ways, as described below.

Approaches to Handling EOG Artifacts

Rejection of Contaminated Trials A common procedure in dealing with ocular arti-
facts is to reject trials in which the electrical activity at the EOG or other frontal
channel exceeds a certain criterion level. When subjects have complied with the in-
structions described in the previous section, the number of EOG-contaminated trials
is relatively low, and these trials can be rejected from farther analysis. In many cases,
there are good reasons for excluding trials containing ocular artifacts; in experiments
studying visual processes, one wants to be sure that on each trial subjects were actually
perceiving the stimuli from the correct location, that is, that they fixated at the des-
ignated location, and also that they perceived the stimulus correctly (ie., that their
eyes were actually open during stimulus presentation). Therefore, one should reject
trials in which subjects did not properly fix their eyes, or closed their eyes during visual
stimulus presentation. Such trials may not reflect the brain processes the experimenter
intended to measure (Simons, Russo, & Hoffman, 1988).

Ariifacts and Overlap in ERP Waveforms
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The rejection method is relatively straightforward, but there are also some inherent
problems in this method. Although it is relatively easy to refrain from blinking for a
short period of time, it is generally impossible not to blink for the entire length of
a block of trials. In addition to instructing subjects that they should not blink, the
experimenter should also emphasize that subjects should not make blink-control a
secondary task that takes up so many resources that it impairs the subject’s behavior
on the primary task or reduces ERP waveforms in amplitude (see, e.g., Weerts & Lang,
1973). Especially fast-rate ERP designs have trials that overlap in time (see also below).
It is therefore unavoidable that a number of trials will contain ocular artifacts and have
to be rejected from further analysis. Although this problem is in general relatively
small with healthy voung adults, the problem of recording artifact-free ERPs in other
age groups, such as small children or seniors, or in patient groups such as attentional
deficit/hyperactivity disorder {ADHD) or autistic children, can be considerably more
problematic.

Researchers have reported a number of additional problems with the EOG rejection
method. First, the ocular artifacts can show a considerable variation in.amplitude, and
the smaller blinks and saccades are generally difficult to detect (see, e.g., Talsma et al.,
2001), Croft and Barry (2002} argue that in order to achieve the same accuracy as ob-
tained with common EOG correction methods, the rejection criteria for EOG artifacts
would have to be set to values as impractically low as 2.6 pV. That is, at frontal EEG
channels, any vertical EOG activity exceeding 2.6 pV would already cause an ERP esti-
mation error equal to or larger than the error induced by EOG artifact correction
methods. Along similar lines, Verleger (1993) argues that it is impossible to determine
whether or not a given trial is contaminated by blink or eye-movement attifacts.

Finally, incorrectly rejecting eyeblink trials may lead to ERP waves that are much
more distorted than not rejecting any eyeblink trials at all. Figure 6.5 shows an exam-
ple of this. Eyeblink EOGs are typically characterized by a relatively large initial voltage
change, as the eyelid moves across the cornea. This initial amplitude change is then
followed by a much slower blink-return drift of the EOG signal to the baseline record-
ing level. In this example we show a grand-average auditory ERP (data from Talsma
2001). We performed eyeblink detection by scanning for peak-to-peak amplitude
changes that exceeded 50 uV in a moving time window of 100 ms (see appendix II).
The left column of figure 6.5 compares the results from correctly rejecting blink trials
with the results obtained by averaging all the trials (i.e., including the eyeblink trials).
Here we started detecting eyeblinks on every trial in a moving window starting about
500 ms before stimulus onset. The center and right two columans of figure 6.5 illustrate
the reason for starting blink detection a few hundred milliseconds before stimulus
onset. Here, blink detection started at stimulus onset, and although this enabled the
detection of any blinks following stimulus onset, the procedure failed in detecting
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Figure 6.5 )

Example of eyeblink artifacts on ERPs. Shown here are the results of correct and incorrect eyeblink
detection on the vertical EQG channel and the effect of eyeblink activity on the midline ERPs
from anterior to posterior electrode positions. (Left} The effect of correctly rejecting eyeblink con-
taminated trials. When eyeblink trials were included {dashed line) EOG activity was larger than
when these trials were excluded (solid line). Consequently, the ERPs are distorted by this ocular
artifact. (Center) Effect of incorrectly conducted eyeblink detection. When blink detection started
at stimulus onset (dashed line), the blink detection algorithm failed to catch the post blink return
drift in the signal, resulting in a large negative drift in the signal around stimulus onset, which led
to a distortion of the ERP wave that was much larger than the distortion caused by not rejecting
any blink-contaminated trial (solid line). (Right) Comparison of correctly and incorrectly rejected
eyeblinks.
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blinks that had occurred right before stimulation. Because the peak-to-peak ampli-
fude test was not sensitive enough to detect the post-blink return drift, the selective
exclusion of only those trials where blinks occurred directly after stimulation resulted
in ERP averages that were much more distorted than either ERPs excluding no blink
activity from the average (center column), or ERPs excluding all blink activity (right
column).

To avoid problems such as these, researchers have proposed a number of correc-
tion methods (see, for example, Brunia et al.,, 1989, for a comparison among different
methods). The most widely used method for removing ocular artifacts from EEG re-
cordings subtract part of the monitored EOG signal from each EEG signal. This ap-
proach is based on the assumption that the EEG recorded on the scalp consists of the
true EEG plus a linearly scaled fraction of the EOG. This fraction (or propagation fac-
tor) represents how much of the EOG signal spreads to the EEG recording electrode.

For effective artifact correction, one must solve two problems: computing the propa-
gation factors for each electrode site, and performing the correction. To compute the
propagation factors accurately it is important to have enough variance in the eye
activity. Blinks produce consistently large potentials and are usually frequent enocugh
to compute propagation factors using the recorded data. Because the scalp distribution
of eyeblink artifacts is distinctly different from the scalp distribution of artifacts related
to saccades, one should calculate separate propagation factors for eye movements and
blinks. Although eye movements in recorded data may be small but consistent enough
to affect LRP averages, they may nevertheless be too small to allow an accurate estima-
tion of propagation factors. If this is the case, it is best to estimate these propagation
factors using separate calibration recordings in which consistent saccades of the order
of about 15 degrees are generated in left, right, up, and down directions.

There are a number of approaches o estimating the propagation factors and sub-
tracting the FOG activity from EEG recordings. These approaches include time or
frequency domain based regression, dipole source modeling, and independent compo-
nent analysis (ICA). In the following sections we discuss advantages and disadvantages
of each of these methods.

Regression Methods Linear regression is a technique to describe the relation between
two sets of variables. One can use linear regression to predict the distortion of FEG
recordings by estimating the linear relation between EEG and EOG recordings (see ap-
pendix [ for a mathematical description of the use of linear regression in ocular artifact
correction). It is one of the earliest developed methods for removing ocular artifacts
from EEG recordings. Regression can correct EEG recordings for ocular artifacts in both
time domain {Gratton, Coles, & Donchin, 1983; Verleger, Gasser, & Mocks, 1982) and
the frequency domain (Gasser, Sroka, & Mocks, 1985; Woestenburg, Verbaten, & Slan-
gen, 1983).2 Although both methods are based on the same underlying regression
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model, differences in implementation can lead to small but consistent differences be-
tween the various methods.

Time Domain Regression Simple time domain linear regression is the basis of a num-
ber of correction methods that have been successfully applied in ERP research (e.g.,
Gasser, Sroka, & Mocks, 1986; Verleger, Gasser, & Mocks, 1982). A problem with this
basic method, however, is that correlations between EEG and EOG that are not due to
ocular artifacts may bias the estimation of the propagation factors. For example, one
may observe similar event-related activity on both EEG and EOG channels, which will
bias the estimation phase of the propagation factors. For this reason, Gratton, Coles,
and Donchin (1983) developed an improved method that is based on the simple re-
gression method, but differs in that it subtracts any event-related activity from both
EEG and EOG recordings and uses only event-unrelated EEG and FOG activity to esti-
mate the regression coefficients.

Frequency Domain Regression One limitation of the simple regression model is that
it cannot account for frequency-dependent and delayed (phase-shifted) transfer from
FOG to EEG (Brillinger, 1975; Kenemans et al., 1991). In contrast, a multiple-lag time
domain (multiple) regression model describes both transfer characteristics. Researchers
have used such models in many multiple lag time domain EOG coxrection algorithms
(Kenemans, Molenaar, & Verbaten, 1991; Kenemans et al.,, 1991). The mathematical
operation used to correct EEG signals in the multiple regression method, known as
convolution, is equivalent to a multiplication in the frequency domain. Generally,
the convolutions involved in time domain multiple-lag regression require considerably
more computation time than the equivalent multiplications in the frequency domain
(fast Fourier transformations included; see Beauchamp & Yuen, 1979). Although com-
putation time is currently much less a consideration as it was more than twenty years
ago, it still follows that multiple-lag ocular artifact correction is best performed in the
frequency domain.

Figure 6.6 (see color plate 1) illustrates the frequency domain regression method.
Shown here is an ERP waveform of one senior participant of an aging study described
by Talsma (2001, chapter 8). Although still an active society member at the age of 79,
this person had severe problems controlling his eyeblink. Using the rejection method
would have resulted in the exclusion of all trials. Figure 6.6 shows an auditory ERP.
The vertical eye channels contain a considerable amount of electrical activity, which
is transferred onto the EEG recordings, specifically channels FP1, FPz, and FP2. After
correction, the undistorted auditory ERP remains intact, whereas the distortion due to
eveblinks has been removed. The method used in this example is based on a descrip-
tion by Kenemans et al. {(1991}.

Artifacts and Overlap in ERP Waveforms
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Figure 6.6

Example of ccular artifacts on ERPs with and without correction,
regression method. (See plate 1 for color version.)
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EEG. Instead of considering propagation factors between E
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1994; Lins et al., 1993a) or principal components analysi
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Lhurk lalsma and viary G. waoldornr

mentation can lead to small but consistent differences be-

Simple time domain linear regression is the basis of a num-
that have been successfully applied in ERP research (e.g.,
186; Verleger, Gasser, & Macks, 1982). A problem with this
that correlations between EEG and EOG that are not due to
1e estimation of the propagation factors. For example, one
related activity on both EEG and EQG channels, which will
of the propagation factors. For this reason, Gratton, Coles,
oped an improved method that is based on the simple re-
rs in that it subtracts any event-related activity from both
nd uses only event-unrelated EEG and EOG activity to esti-
ents.

ion One limitation of the simple regression model is that
iency-dependent and delayed (phase-shifted) transfer from
75; Kenemans et al.,, 1991). In contrast, a multiple-lag time
m model describes both transfer characteristics. Researchers
many multiple lag time domain EQG correction aigorithms
Jerbaten, 1991; Kenemans et al., 1991). The mathematical
EEG signals in the multiple regression method, known as

to a multiplication in the frequency domain. Generally,
in time domain multiple-lag regression require considerably
an the equivalent multiplications in the frequency domain
15 included; see Beauchamp & Yuen, 1979). Although com-
nuch less a consideration as it was more than twenty vears
itiple-lag ocular artifact correction is best petformed in the

te 1) illustrates the frequency domain regression method.
form of one senior participant of an aging study described
). Although still an active society member at the age of 79,
lems controlling his eyeblink. Using the rejection method
2 exclusion of all trials. Figure 6.6 shows an auditory ERP.
“ontain a considerable amount of electrical activity, which
1 recordings, specifically channels FP1, FPz, and FP2. After
auditory ERP remnains intact, whereas the distortion due to
d. The method used in this example is based on a descﬂp—
191).

Artracis and LUveliidp I ol vWaveluriils =7

FPz 3y
| JM\

PN

VAR N Mw 460 800 ms
Blink Artifact E ]
. R, T at 5 ™

390 - 420 ms 360 - 420 ms
a) Without Eye-Blirk Correction b) With Eye-Blink Correction

FPz
vEOG

Pz T 390 - 420 ms

b L b d) Topography of the Propagation Estimates
Oz T :
e o e . SN

¢) Bstimated Propagation of BOG Activity From FPz to Oz EEG Channels

Figure 6.6
Example of ocular artifacts on ERPs with and without correction, using the frequency domain
regression method. (See plate 1 for color version.)

Dipole Source Modeling Scherg and Berg (1995) and Berg and Scherg (1991) argue
that the traditional regression methods -can distort the spatial distribution of EEG
recordings so much that frontal sources (including the auditory areas) can no longer be
modeled adequately. There are two reasons for this argument: (1) according to Scherg
and Berg (1995), the EOG reflects only part of the true oculo-electric activity; and (2)
EEG activity also transfers to the EOG channels (Tacono & Lykken, 1981). Therefore,
the regression methods may remove not only ocular activity but also part of the EEG
activity at frontal channels. As an alternative to regression they therefore propose a
dipole modeling solution, which estimates the eye activity independent of the frontal
FEG. Instead of considering propagation factors between EQOG and EEG, source com-
ponents or “characteristic topographies” are computed for each type of eye activity.
These source components are then combined with a dipole model {Berg & Scherg,
1994; Lins et al.,, 1993a) or principal components analysis (PCA)-based topographic
description (Ifle, Berg, & Scherg, 1997) of the brain activity to produce an operator
that is applied to the data matrix to generate waveforms that are estimates of the
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overlapping eye and brain activity. The estimated eye activity is then subtracted
from all EEG (and FOG) channels using the propagation factors defined by the source
compornents.

According to the authors of the BESA dipole localization program, this method has
a number of advantages over the traditional regression approach. First, they claim that
it generates a better estimate of ocular activity than that provided by EOG channels.
Second, it allows them to use the EOG channels for their EEG information. Third, if
separate soutce components are generated for different types of ocular artifacts, their
estimated waveforms provide an estimate of these different types of ocular artifacts
independently.

Disadvantages of this method are, however, that it relies heavily on the use of dipole
localization software and involves a labor-intensive construction of an adequate dipole
model for estimating and separating the underlying ERP and EOG activities. The
method also requires using a considerable number of periocular electrodes for estimat-
ing ocular activity, which cannot be used for recording brain activity at other loca-
tions. This may especially be a problem when recording with a limited number of
electrodes (e.g., 32 or fewer).

Independent Component Analysis Independent components analysis {ICA) is a new,
data-driven method for extracting individual signals from mixtures of signals (see e.g.,
Stone, 2002, for a good introduction of the ICA technique). More specifically, ICA can
separate mixtutes of signals recorded from N channels into a maximum of N separate
components. Although ICA is still a fairly new technique, it has been used in analyz-
ing a wide variety of problems (e.g., Jung et al., 2000, 2001}, including separating eye
movement activity from EEG recordings (Jung et al., 2000). ICA is similar to the spatial
PCA approach (llle, Berg, & Scherg, 1997) in that both ICA and PCA find spatial com-
ponents representing ocular artifacts. Corrected EEG can than be obtained by remov-
ing these components through inverse computation. ICA differs from PCA in that it
can detect components that are statistically independent, but not necessarily uncorre-
lated, whereas PCA components are by definition always uncorrelated. For this and
other reasons, PCA cannot completely separate artifacts from cerebral activity, espe-
cially when both have comparable amplitudes (Lagerlund, Scharbrough, & Busacker,
1997), whereas ICA would be theoretically capable of doing so. :

A limitation of ICA, howevet, is that the algorithm assigns ocular artifacts arbi-
trarily to one of the detected independent components. Therefore ICA requires the
visual inspection of each solution to determine which component represents the esti-
mated ocular artifact that is to be removed. In addition, ICA is a very novel tech-

nique that still needs to be validated and compared to some of the more established
methods.

Artifacts and Overlap in ERP Waveforms
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Overlapping ERP Components

Electromagnetical event-related brain activity typically consists of components that
can last up to 1 or more seconds. Of these components, the P300 can be of particularly
high amplitude and is usually followed by a negative slow wave returning to baseline,
which can fast for up to one or more seconds. Many experiments present stimuli at a
relatively slow rate (i.e., less than one stimulus per second), to prevent ERP waves from
adjacent trials overlapping. At higher presentation rates, ERPs elicited by successive
stimuli can overlap in time, which can result in distortion of the ERP averages (Wol-
dorff, 1993). ‘

There are many experimental situations, however, that require a high rate of stimu-
lus presentation (reviewed in Woldorff, 1995). In studies of selective attention, for
example, a relatively low rate of stimulus presentation makes it very difficult to selec-
tively focus on one relevant stimulus type and ignore others. High stimulus presenta-
tion rates, on the other hand, seem to enable a more selective focusing of attention.
This view is also strongly supported by empirical data indicating that the early differ-
entiation of processing of attended and unattended stimuli is enhanced by, or even
requires a faster rate of stimulus presentation (Hansen & Hillyard, 1984; Hillyard et al.,
1973; Parasuraman, 1978; Schwent, Hillyard, & Galambos, 1976; Woldorff, Hansen,
& Hillyard, 1987, Woldorff, Hackley, & Hillyard, 1991; Woldorff & Hillyard, 1991;
Woldorff et al., 1993; Weldorff et al., 1998).

At high rates of stimulus presentation, however, there exists the potential for wave-
form distortion that needs to be dealt with. In this section we describe a number of
approaches one can take to minimize or remove the distortions resulting from over-
lapping ERPs. More specifically, we will describe the ADJAR iterative post-experimental

deconvolution method and the “no-stim” subtraction method in detail. Additional

overlap correctlon methods use Fourier transforms (Hansen, 1983), or the General
Linear Model (Brillinger, 1981) to model the distortion due to ovetlap from adjacent
trials.

Approaches to Estimate Overlap

To date, researchers have taken various approaches to resolve the problem of over-
lapping ERP responses. One approach has been to increase the high-pass cutoff of the
filter settings, which effectively attenuates the longer latency, lower frequency portion
of the ERPs. This technique artificially “forces” the response to be finished, or at least
to appear to be finished, by the time the next stimulus is presented. Such high-pass
filtering may achieve a reasonable solution when only the early high-frequency
waves of the ERP are of interest, but may be of limited value when the longer latency
waves are of interest, or when these waves contain significant power in the higher
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frequencies, Therefore, if studying these longer latency waves, one needs to apply one
or more techniques to actually estimate the overlap from adjacent responses and sub-
tract the estimated overlap from each waveform. In this section we will discuss two
basic methods for estimating and removing overlap. We should emphasize that the
use of either of these methods should be taken into consideration while designing the
experiment, because a number of criteria will have to be met in order to successfully
estimate the overlap from adjacent trials.

In general, one can considerably reduce the problem of overlap by fully randomizing
and first-order counterbalancing the stimulus sequence. This procedure ensures that
each trial type will contain approximately the same overlap as each other trial type.
Therefore, contrasting two trial types that are each distorted with exactly the same
overlap with each other will reveal the trae difference between these two trial types.
There are, however, some caveats in this method: (1) Woldorff (1993, 103-1035) dis-
covered that under certain circumstances stimulus randomization does not control for
differential overlap. More specifically, when the experimental condition varies between
runs (e.g., attend left vs. attend right), thereby changing the responses to the adjacent
trial types, the observed overlap may not necessarily be the same for all trial types,
even if the stimulus presentation sequence was fully randomized. (2) Sometimes, ERPs
from two separate stimuli will be combined (e.g., one auditory [A] and visual [V] stim-
ulus) and compared to ERPs elicited by the simultaneous presentation of a multi-object
stimulus (e.g., one audiovisual multisensory object). One can combine ERPs when the
ERP waves of interest represent independently evoked perceptual processing of these
stimuli only {(e.g., Giard & Perronet, 1999; Molholm et al., 2002; Teder-Silejarvi et al.,
2002; Talsma & Woldorft, in revision). When this assumption is valid, the combined
waveform can be compared to a similar multi-object response. When overlap distorts
these ERD waveforms, however, the assumption of sensory processing only is violated
and the summated waveforms will contain twice the overlap distortion as the multi-
object ERPs waveforms and therefore obfuscate the effects of interest. {3) Although
randomization can enable the extraction of the differential response between two
trials, the raw ERPs of both types will still be distorted by overlap.

Interstimulus Interval Jittering At stimulus rates where successive ERP waveforms
overlap, every response included in the average (except the first and the last in the se-
quence) will have superimposed upon it portions of the ERP tesponse to the preceding
stimulus and portions of the response to the succeeding stimulus. Randomly varying or
jittering the ISIs around a mean value can partially cancel or “smear out” these over-
lapping responses, thereby mitigating the distortion of the final average. An empirical
tule of thumb is that the effective jitter tange needs to be larger than the period of
the slowest dominant waves in the overlapping responses (Woldorff, 1993). Given a
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few assumptions, the effect of ISI jitter on the overlap from adjacent respanses can be
approximated as a low-pass filtering opefation on the adjacent response with either a
negative or positive time shift (see Woldorff, 1993, for a full discussion).

Postexperimental Deconvolution (ADJAR) As described above, jittering the ISI be-
tween successive trials acts as a low-pass filter, which mitigates the distortion caused by
overlapping ERP components. However, as with a high-pass filtering method described
eatlier, this approach still leaves a residual amount of overlap in the ERP waveforms.
One mathematical framework of methods estimating this residual distortion makes
use of the distribution of ISIs between successive stimuili. This framework, known as
the adjacent response (ADJAR) technique (Woldorff, 1993), estimates overlapping ERP
waveforms by convolving preceding and succeeding ERP responses with their respec-
tive 18I adjacent event distributions {figure 6.7, plate 2}, '

Advantages of the ADJAR technique are that it allows for postexperimental decon-
volution, which makes it suitable to apply to a large number of experimental designs.
In addition, ADJAR requires a relatively minor number of changes to existing experi-
mental designs. In general, to successfully cotrect ERP data using ADJAR, one should
ensure that ISIs are reasonably well jittered. It also helps to have the stimulus sequence
reasonably well randomized, but this is not critical (see below). In addition, the ADJAR
technique is suitable for deconvolving various subranges of the ISI event distribu-
tions, which allows the analysis of extremely rapid stimulus sequences. Because ADJAR
makes use of the actual event distribution of the trial sequences that estimate the
overlap, instead of a theoretical distribution, ADJAR will wotk when unequal num-
bers of trials are present in different conditions. Finally ADJAR also works when event-
distributions are skewed, or when stimulus sequences are not fully randomized. For
example, in “$1/82” paradigms, a stimulus of one type (ie., a cue) is always followed
by a stimulus of another type (i.e., an imperative stimulus}, but two stimuli of the same
type {i.e., two cues) never follow each other.

ADJAR has proven relatively difficult to implement. In addition, the time domain
deconvolution process is computationally intensive and therefore a time-consuming
process (although theoretically the time domain convolutions could be replaced by a
frequency domain multiplication). Finally, because of the low-pass filter characteristics
of jittering I81s and the convergence of the iterative approach, ADJAR does not handle
the removal of overlap from low-frequency responses, such as CNVs, or negative slow
waves.

Indlusion of “No-Stim” Trials As an alternative to the ADJAR post-experimental
deconvolution, one can choose to estimate the distortion on ERP waves by including a
substantially large enough proportion of “no-stim” trials in the experimental design.
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Figure 6.7

Tlustzation of the use of the ADJAR overlap correction technique in a multisensory experiment.
Auditory and visual stimuli were presented in close temporal proximity. {@) Shown here is the ERP
response to an auditory stimulus that was followed in time by a visual stimulus (between about 75—
125 ms). The delayed visual response can clearly be seen in the uncorrected FRP waveform {solid
line). After ADJAR correction, the contribution of the visual stimulus has been removed {dashed
line), () The scalp topography of the difference between corrected and uncorrected ERP waveforms.
This scalp topography is typical of a visual ERP waveform, showing that ADJAR was successful in
removing the visual ERP, but maintaining the auditory ERP. (See plate 2 for color version.)

This approach borrows from the functional imaging (FMRI) literature, where no-stim
trials were first introduced to provide a way to estimate the overlap from the slow,
event-related, hemodynamic response signals (blood oxygen dependent, or BOLD sig-
nals) used in functional MRI (Buckner et al., 1998; Dale & Buckner, 1997; Burock et al.,
1998). No-stims carn best be thought of as points in time that are randomly inserted
into the stimulus stream, and which have the same randomization as the regular
stimuli, but without the actual occurrence of 2 stimulus. In such a case, the time-locked
averages 1o no-stim trials will contain on average the same response overlap from ad-
jacent trials as any other trial type will contain. When the proportion of no-stims and
the jitter rate of the 1SI between trial types satisfy the conditions Busse and Woldorff
specify (2003), one can assume that the no-stim evenis do not evoke a response
themselves. Therefore, selectively averaging the no-stim events will only reflect the
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Mlustration of the effectiveness of subtracting time-locked averages "no-stim’ trials from the time-
locked averaged ERPs elicited by real stimuli. In this example, ERPs were collapsed across all trial
types in one condition of a multisensory integration condition. Panel (@) shows supetimposed the
time-locked averaged ERP waveforms to the real stimulus trials and to the no-stim trials, Panel (b)
shows the same ERP waveform after subtracting the response to the no-stim trials. Notice that the
slanted baseline, which is equally present for the both stimulus trials and for the no-stim trials in
panel (), has disappeared in panel (b).

summated response overlap from adjacent trials. Thus, subtracting the average no-
stims ERP from the observed ERP averages from the other trial types will subtract out
the response overlap, revealing the true ERP waveform to these other trial types.

As an example, we present data from a study on the interaction between multi-
sensory integration and attention (Talsma & Woldorff, in revision). To test the effec-
tiveness of estimating overlap using the no-stim method, visual-only, auditory-only,
and multisensory ERPs were collapsed (to obtain a very high signal to noise ratio) for
one attention condition (attend left); no-stim ERPs from the same attention condition
were subtracted from this waveform. Figure 6.8a clearly shows that baseline activity
(resulting from overlapping responses) is equally present in both ERPs evoked by stim-
ulus trials as well as ERPs evoked by no-stim trials. Subtracting the no-stim ERPs
from the stimulus ERPs therefore eliminates any baseline activity from the stimulus
ERPs. ) '

The no-stim approach can have several advantages over ADJAR. First of all, subtract-
ing out no-stim ERP responses is a mathematically simple procedure, which is also easy
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to implement in existing ERP software. However, the use of this method needs to be
carefully planned in the design stage of the experiment. Because no-stims pick up any
overlapping ERPs in exactly the same way as normal ERPs would, the no-stim method
is also able to carrect for overlap from all types of low-frequency activity, including late
negative slow waves, or stimulus preceding, anticipatory negativities.

There are, however, also a number of limitations to the no-stim method. First, it is
necessary to include a relativly high number of no-stim trials in the design to get a
clean estimate of the overlap. There are two reasons for this. First, as with regular ERPs,
the signal-to-noise ratio of no-stim ERPs is ditectly propertional to the square root of
the number of trials. Therefore, one needs to have at least the same number of no-stim
trials as there are regular trials in one condition, to obtain an estimate of the overlap
that has the same signal-to-noise ratio of the ERP waves. Second, as Busse and Woldorff
(2003) show, the total number of no-stim trials should be a considerable proportion
of the total number of trials, to avoid the no-stim trials from evoking an omitted stim-
ulus response. These authors showed that this is even mote true at rates of one stimu-
lus per second or faster, as the omitted stimulus response is even more likely to be
elicited at such rates. For these reasons, it is not advisable to use no-stims in long
experiments, because the inclusion of a substantial number of no-stims would make an
already long experiment even longer.

For reasons given above, the no-stim method works best in fully randomized and
counterbalanced designs. When experimental designs are not fully counterbalanced,
the assumption that all stimulus types are equally distorted by overlap is violated, and
therefore, subtracting no-stim ERPs from real stimulus FRPs will not accurately remove
the adjacent-response ovetlap and reveal the true ERPs. In such circumstances, ADJAR
or other deconvolution approaches would be more advisable.

Comparison of ADJAR versus No-Stims

From the description of the two main overlap removal techniques it follows that each
technique has its own strengths and weaknesses. Whereas ADJAR is flexible and adapt-
able, it is telatively hard to configure or implement correctly. The no-stim subtraction
method, by contrast, is more limited to specific types of experiments and has certain
requirements, but is easy to use. It also may be better at estimating overlap caused by
very slow potentials. There are many situations whete either method is applicable, and
there is no principal requirement to limit oneself to one method,

Conclusion
This chapter has discussed a number artifacts and methodological problems that are

commonly dealt with in ERP research. More specifically, we have discussed recording
artifacts, such as spikes, drifts, and noise from power lines, ocular artifacts, including
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ERP software. However, the use of this method needs to be
esign stage of the experiment. Because no-stims pick up any
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mulus types are equally distorted by overlap is violated, and
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proaches would be more advisable.
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blinks and saccades, and finally, we have discussed a number of problems that might
arise as the stimuli are presented more rapidly and the ERPs elicited by adjacent trials
in the sequence overlap in time and distort the averages.

Common recording artifacts, such as spikes and drifting channels, can be detected
through mathematically easy procedutes that are generally fairly successful at exclud-
ing from the average any trials containing these artifacts. We have argued, however,
that in certain cases it is possible to correct trials containing such artifacts. We have
farther illustrated that the amplitude of artifacts on single trials might be considerable.
After averaging, the amplitude of spike and drift artifacts are substantially reduced.
However, the amplitudes of these artifacts are still large enough to be falsely identified
as experimental effects. Therefore, one should carefully determine the parameters used
in artifact exclusion or artifact correction procedures.

Similarly, ocular artifacts are commonly dealt with by removing any trials on which
they are detected. There are, however, a number of useful alternatives to the trial re-
moval approach. The first of these methods consists of computing the propagation of
electro-ocular activity into the EEG through linear regression. There are a number of
different algorithms based on this technique, Simple regression assumes instantaneous
and frequency independent transfer between EOG and EEG. Multiple regression, on
the other hand, is able to handle delayed and frequency dependent transfer from EOG
to EEG. These two techniques both operate in the time domain. Frequency domain
regression techniques are mathematically equivalent to the time domain multiple
lag regression method, but are computationally more efficient than the time domain
method.

An alternative to the regression technique is to model both cortical and ocular
activity by using a dipole model. The ocular activity can then be estimated through a
spatial dipolar pattern, which can be subtracted from the spatial pattern that is ex-
plained by the cortical dipoles. Similarly, one can use independent component analysis
to estimate a statistically independent spatial pattern that can be subtracted from the
EEG channels.

Finally, at fast rates of stimulus presentation, the ERPs to successive stimuli in the
sequence can overlap, thereby distorting the ERP averages. We discussed two methods
to estimate and remove such overlap. The ADJAR approach is an iterative deconvelu-
tion technique that subtracts better and better estimates of the adjacent-response
overlap from the ERPs. The second method relies on including no-stim trials in the
randomized sequence that do not evoke FRPs themselves, but whose time-locked
averages reflect the same overlap from adjacent trials as do the other stimulus types.
Both of these methods has its specific strengths: ADJAR is a more general approach, but
not so easy to implement and slow to converge for removing very slow wave overlap.
The no-stim method imposes certain design restrictions {e.g., inclusion of a number
of additional trials of null events) and assumptions (no elicitation of omitted stimulus
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responses), but it can be very useful under certain circumstances, such as removing
slow wave overlap.

Appendix I: Ocular Artifact Removal Using Linear Regression

In its most elementary form, time domain regression methods perform a simple linear
regression between signal and artifact. Consider for example the following equation,

¥e = th + ér (62)

which represents the linear relation between two signals x (EOG) and y (EE), which
vary as a function of time. Time is indexed by t, ranging from 0 to T — 1 (T being the
number of samples) and e, represents the error made when predicting ¥ from x;. Mir-
imizing the mean square of ¢ {across f), we find a least square estimate for k in equa-
tion 6.2:

Wiy
Wiy

h= (6.3)
where wy, is the covariance between x and y, and Wxx denotes the variance of x. Using
the value of k from equation 6.3 the EOG artifact in signal y can now be corrected by
subtracting hx;, from y;.

Equation 6.2 can be extended and turned into a multiple regression model by
including as predictors past and future values of x:

T
ye= > huXeo e (6.4)
HET .
where # indexes the 1ag‘ for prediction. Equation 6.4 represents a general model for
multiple lag regression. As for equation 6.2, we can solve equation 6.4 using a least
square estimate:

H=Wg'Wy (6.5)

where H is a vector containing the h,, for u ranging from —U to U. Wiy is a sym-
metrical (20 + 1) x (2U +1) matrix, containing the covariances between x; and x;
u=—U,... U—i.e., the autocovariance function of x. Wy, is a vector containing the
covariances between x; and y;_yy, u=-U,..., U, ie the cross-covatiance function of x
and y. After obtaining H from equation 6.5, the observed EEG signal can be corrected
for ocular artifacts by convolving the observed EOG signal with the regressors H and
subtracting the estimated artifact from the observed EEG signal, e.g.:

T
FEG: con = EEGuops — . 1aEOG(u) (6.6)
n=-T
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Appendix |I: Sample C++ Code for Spike Detection

Excessive amplitude fluctuations in EEG signals can be det
straightforward moving peak-to-peak amplitude test. The folk

" used to perform such a test. This function scans if the EEG sig
the value of waxAmppiff within a moving time window of
detected amplitude fluctuation exceeds the maximally allo
tion, the function stores the observed maximum amplitude -
*amplitude while also returning the first sample number at
curred. Otherwise, the function returns 0 to indicate that the
has passed the test.

01 int detectSpikes (double *data,

02 double maxAmpDiff,

03 int duration,
04 int start,
as int end,
06 double *amplitude)
074

08 double ampDiff;

S 09 int index;

- 10

L1l for (int j = start; j < {end-duration); j++)
12 {

13 for (index = 0; index <= duration; ind

14 {

215 ampDiff = fabs (data [J] - dat

 16 : if {fabs (ampDiff >= maxAmpDif
7 {
18 *amplitude = ampDiff;
19 return j;

20 ¥

21 }

.22 }

.23 *amplitude = 0;
:24 return 0;

“This function can scan for artifacts of different amplitude ar
“‘one of the following arguments:

double *data: A vector containing EEG data.
"double maxAmpDiff: The maximum peak-to-peak am
allowed within the envelope.



LUK Tanina and Marty . ywoldorir

e very useful under certain circumstances, such as removing

act Removal Using Linear Regression

orm, time domain regression methods perform a simple linear
al and artifact. Consider for example the following equation,

(6.2)

ear refation between two signals x (EOG) and y (EEG), which
1e. Time is indexed by t, ranging from 0 to T — 1 (T being the
¢; represents the error made when predicting y; from x;. Min-
e of ¢ (across f), we find a least square estimate for i in equa-

(6.3)

1ce between x and y, and wy, denotes the variance of x, Using
itiony 6.3 the EOG artifact in signal p can now be corrected by

extended and turned into a multiple regression model by
ast and future values of x:

(6.4}

- for prediction. Equation 6.4 represents a general model for
As for equation 6.2, we can solve equation 6.4 using a least

(6.5)

itaining the hy, for u ranging from —U to U. Wy, is a sym-
+ 1) matrix, containing the covariances between x; and x;_,,
autocovariance function of x. Wy, is a vector containing the
nd vy, 4= -U,..., U, ie. the cross-covariance function of x
from equation 6.5, the observed EEG signal can be corrected
nvolving the observed EOG signal with the regressors H and
1 artifact from the observed EEG signal, e.g.:
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Appendix II: Sample C++ Code for Spike Detection

Excessive amplitude fluctuations in EEG signals can be detected using a relatively
straightforward moving peak-to-peak amplitude test. The following C+-+ code can be
used to perform such a test. This function scans if the EEG signal fluctuates more than
the value of maxamppiff within a moving time window of length duration. If the
detected amplitude fluctuation exceeds the maximally allowed amplitude fluctua-
tion, the function stores the observed maximum amplitude variation in the variable
*amplitude while also returning the first sample number at which this violation oc-
curred. Otherwise, the function returns (0 to indicate that the FEG signal in this epoch
has passed the test.

01 int detectSpikes (double *data,

02
03
04
05
06
07{
08
0o
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
253}

double maxAmpDiff,
int duration,

int start,

int end,

double *amplitude)

double ampDiff;
int index;

for (int 3 = start; j < (end-duration); j++)
{
for (index = 0; index <= duration; indext+)
{
ampDiff = fabs (data [ji - data[] + index]);
if (fabs (ampDiff >= maxAmpDiff))
{
*amplitude = ampDiff;
return j;
}
¥

¥
*amplitude = 0;

return 0;

This function can scan for artifacts of different amplitude and duration by modifying
one of the following arguments:

double *data: A vector containing EEG data.
"double maxAmpDiff: The maximum peak-to-peak amplitude fluctuation

allowed within the envelcpe.
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int duration: The length of the time window used for the peak-to-
peak amplitude test.

int start: The first EEC data point that is tested.

int end: The last EEG datapoint that is tested.

Appendix lll: Sample C++ Code for Flat Line Detection

Extended periods of little or no EEG activity (e.g., indicating amplifier saturations or
blocking) can be detected using a modified version of the peak-to-peak amplitude test
described in appendix II. The following C+-+ code can be used to perform such a
test. This function is similar to the spike detection algorithm; however, it scans the
EEG signal to see if it fluctuates less than the value of minAmppiff within a moving
time window of length duration. If the detected maximum amplitude fluctuation stays
within the minimally allowed amplitude fluctuation for the entire window, the func-
tion stores the recorded maximum amplitude variation in the variable *amplitude
while also returing the first sample number at which the violation occurred, Otherwise,
the function returns 0 to indicate that the EEG signal in this epoch passed the test. The
advantage of a method such as this over scanning for the occurrence of repeated seties
of identical digitization units is that this method will allow for small fluctuations due
to line noise.

01 int detectFlatline (double *data

02 double minAmpDiff,

03 int duration,

04 int start,

05 int end,

06 double *amplitude}

07 {

08 double ampDiff;

09 double localMax = 0;

i0 int index;

11 for (int j = start; J < (end-duration); j++)

12 {

13 for (index = 0; index <= duration; index+t)
14 {

15 ampDiff = fabs (dataf[j]l - data[] + index]);
16 if (fabs(ampDiff) > localMax)

17 localMax = fabs(ampDiff);

18 }

19 if (fabs {localMax <= minAmpDiff)}

20 {

21 *amplitude = ampDiff;
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22
23
24
25
26
27 }

return j;

}
*amplitude = 0;
return 0;

This function can scan for artifacts of different amplitude ¢

Notes

one of the following arguments:

double *data: A vector containing EEG data.

double minAmpDiff: The minimum peak-to-peak a
required within the time window

int duration: The length of the time window U
peak anmplitude test.

int start: The first EEG data point that is te

int end: The last EEG datapoint that is teste
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(double *data
double minAmpDiff,
int duration,

int start,

int end,

double *amplitude)

start; j < (end-duration); j++)
ex = 0; index <= duration; index++)
pDhiff = fabs (datal[j] - data[] + index]);
(fabs(ampDiff) > localMax)
localMax = fabs(ampDlff);

(localMax <= minAmpDiff}))

mplitude = ampDiff;

22 return j;
23 1

24 }

25 *amplitude = 0;

26 return 0;

27 3

This function can scan for artifacts of different amplitude and duration by medifying
one of the following arguments:

double *data: A vector containing EEG data.

double minAmpDiff: The minimum peak-to-peak amplitude fluctuation
required within the time window. .

int duration: The length of the time window used for the peak-to-
peak amplitude test.

int start: The first EEG data peint that is tested.

int end: The last EEG datapoint that is tested.
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Notes

1. There are additional interpretation difficulties related to target stimuli, such confounds caused
by motor response related ERP components. These problems are, however, beyond the scope of
this chapter.

2. Time domain refers to the most common method of representing EEG or ERP waveforms. In
the time domain, electrical voltages are represented as a function of time, knowmn as a time series.
Any time series X; (where t == 0,..,,f = N) can be decomposed into a series of sine and cosine
wave frequencies Fy (where [ =0,..., f = N/2}. The representation of a signal as a series of fre-
quercies is known as the frequency domain representation of a signal. The conversion between
time domain and frequency representation can be dome through a computational technique
known as the discrete Fourier transform.
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Example of ocular artifacts on ERPs with and without correction, using the frequency

domain regression method. See chapter 6.
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Plate 2

Ilustration of the use of the ADJAR overlap correction technigue in a multisensory exper-
iment. Auditory and visual stimuli were presented in close temporal proximity. () Shown
here is the ERP response to an auditory stimulus that was followed in time by a visual stim-
ulus (between about 75-125 ms). The delayed visual response can clearly be seen in the
uncorrected FRP waveform (solid line). After ADJAR correction, the contribution of the
visual stimulus has been removed (dashed line). (b} The scalp topography of the difference
between corrected and uncorrected ERP waveforms. This scalp topography is typical of a
visual ERP waveform, showing that ADJAR was successful in removing the visual ERF, but

maintaining the auditory ERP. See chapter 6.
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